El ultraligero gallego Colyaer, banco de ensayos de tecnología eléctrica y eVTOL

Fiberlaminates es una empresa gallega que fabrica los aviones ultraligeros Colyaer, de los cuales es especialmente espectacular su modelo anfibio Freedom 100.

Estos ultraligeros han servido de buena base para varios aviones no tripulados, tanto el Martin terrestre en Estados Unidos, como el Freedom anfibio en China. Y ahora junto con Abervian, Zelestium y Embention, con financiación del CDTI y de los fondos NextGenerationEU europeos, van a electrificar la aeronave.

En el marco del Programa Tecnológico Aeronáutico de 2023, subvencionado por el CDTI, las empresas citadas anteriormente han unido sus fuerzas para trabajar en el proyecto ELECTRA (ELEctrificación de ComponenTes pRopulsivos en Aeronaves).

ELECTRA tiene como objetivo principal el desarrollo de un sistema de potencia eléctrico destinado primeramente a ultraligeros y aeronaves de despegue vertical (eVTOL), aunque no descartan su potencial aplicación en otras aeronaves de mayor tamaño.

El proyecto aúna la experiencia de Fiberlaminates en la fabricación de aeronaves ligeras en material compuesto y su adaptación a otros menesteres, con la de Zelestium y su capacidad tecnológica en diseño de baterías, la de Avervian en el diseño de de sistemas de monitorización y control de baterías y Embention y su experiencia en pilotos automáticos y fly-by-wire para drones.

Además de electrificar las aeronaves para reducir la emisión directa (la que se produce por el tubo de escape) de contaminantes, el proyecto busca la reducción del ruido que generan las aeronaves, reduciendo la contaminación acústica.

De momento no hay mucha más información sobre el diseño, pero por las imágenes que hay publicadas en su web parece que lo más lógico sería realizar el proyecto en varias fases.

Teniendo en cuenta que la empresa ya tiene experiencia en la conversión de aeronaves en no tripuladas, lo lógico sería realizar una primera de electrificación de la aeronave convencional, con un motor eléctrico, las baterías y los sistemas de gestión. Aparentemente, añadirían un carenado para una hélice entubada, cuyo objetivo sería el de reducir el ruido y mejorar la eficiencia.

Una vez dominadas la electrificación y la gestión de las baterías, el siguiente paso lógico sería su conversión en aeronave de despegue y aterrizaje vertical.

Fuentes: Fiberlaminates,

Lockheed Martin muestra un diseño conceptual de avión cisterna furtivo

Diseño conceptual para el KC-Z, vía Aviation Week

La división Skunk Works de Lockheed Martin ha dejado ver un diseño conceptual de aeronave furtiva para repostaje en vuelo en Aviation Week, según hemos descubierto gracias a The Aviationist.

El KC-135 empieza a no dar más de sí y necesita una jubilación. El KC-46 ha demostrado ser tan problemático como los últimos diseños civiles de Boeing. Y, para desgracia de la USAF, los MRTT de Airbus fueron rechazados. Así que ahora mismo los estadounidenses se encuentran por un lado buscando un reemplazo interino para los dos modelos de cisterna ya citados, y por otro lado para un modelo de cisterna del futuro.

Hasta ahora hemos hablado de una propuesta de Boeing, también furtiva y bideriva, y un desarollo de Jet Zero, tipo blended wing body, que podría ser avión de pasajeros, avión de carga civil y militar, o avión cisterna.

En principio el diseño de Lockheed Martin parece tener dos motores, por sendas tomas bajo el ala, con un ala con forma de lambda, y aparentemente dos cockpits, uno delantero y otro por detrás, por las ventanas que muestra.

No obstante, no deja de ser un diseño conceptual, una imagen artística de lo que podría ser, y es totalmente distinta de otras imágenes que ha mostrado Lockheed Martin como futuro avión cisterna. Por ello, tal vez lo más interesante no sea la forma en sí de esta imagen, sino comprobar que los diseños furtivos ya no sólo se aplican a pequeños cazas y bombarderos, y que está ganando importancia en todo tipo de aeronaves, como aviones cisterna.

Sikorsky y Rain Aero ensayan con éxito un helicóptero antiincendios no tripulado y autónomo

Helicóptero Black Hawk “pilotado opcionalmente” de Sikorsky equipado con sistemas de autonomía MATRIX —de Sikorsky— y Wildire —de Rain— durante demostraciones de localización de incendios y focalización en la sede de Sikorsky en Stratford, Connecticut.

Rain.aero junto con Sikorsky, han estado investigando desde hace tiempo la posibilidad de utilizar helicópteros no tripulados y autónomos para luchar contra incendios, aprovechando el desarrollo de la tecnología MATRIX de Sikorsky. que convierte a sus Black Hawk en aeronaves opcionalmente tripuladas.

La demostración de vuelo tuvo lugar en la sede de Sikorsky en Stratford, Connecticut, con el “helicóptero Black Hawk pilotado opcionalmente” volando en modo autónomo. gracias a MATRIX, eso sí, con pilotos de seguridad de Sikorsky a bordo.

Rain (y Sikorsky) han logrado probar que el Black Hawk autónomo es capaz de realizar detección temprana y respuesta rápida a incendios forestales. Las dos compañías han completado pruebas de vuelo que demuestran cómo un helicóptero que vuela con Sikorsky MATRIX y el sistema de autonomía de misión Wildfire,de Rain, podría lanzarse rápidamente en las fases iniciales de un incendio.

En 2023, en colaboración con Sikorsky, nos propusimos demostrar que podíamos recibir una alerta sobre un posible incendio forestal, enviar comandos para lanzar y volar un helicóptero autónomo capaz de mover una gran cantidad de agua a la ubicación de un incendio y luego ordenar al helicóptero lanzarla con precisión sobre el fuego. Estamos muy satisfechos con los resultados que demuestran con éxito la detección temprana autónoma y la respuesta rápida.

director ejecutivo de Rain, Maxwell Brodie

Según el vídeo de la nota de prensa, el helicóptero sería capaz de cargar agua en el heli-balde de forma autónoma y dirigirse al fuego para atacarlo. No obstante, en las descargas realizadas por humanos rara vez se observa un ataque directo, sino que lo realizan de forma lateral, indirectamente, para evitar sobrevolar las llamas y el humo, mientras que el helicóptero autónomo lo realiza volando directamente sobre él, lo que explica por qué habla de ataque en fases tempranas del fuego, o un estadío de desarrollo muy inicial, teniendo que «aprender» aún a realizar los ataques indirectos para preservar los motores y, por tanto, la seguridad de la máquina.

El sistema de autonomía de la misión Rain Wildfire incluye componentes de software para la gestión de misiones de incendios forestales, planificación de rutas, percepción de incendios, estrategia de extinción, orientación de supresores y subcomponentes para la integración con sistemas de autonomía de aeronaves, cámaras de espectro visual e infrarrojo, navegación inercial, GPS y otros sensores, y equipo de despliegue automatizado de supresores.

Fuentes: Rain.Aero [-1-] y [-2-]

«Mandamás» de la USAF vuela en un F-16 pilotado por IA

Los más habituales ya conocéis el X-62 VISTA, también conocido como NF-16. Para los más despistados, les recordaremos que es un avión experimental estadounidense con el que se están llevando a cabo ensayos incluso de combate humano-IA, ¡volando el F-16 una IA! Y que llevamos siguiendo desde hace un tiempo.

Y, en un paso más para demostrar la fiabilidad del programa, han subido al avión pilotado por la inteligencia artificial a Frank Kendall, secretario de la USAF.

Nota de prensa

El Secretario de la Fuerza Aérea, FRANK KENDALL, voló en el asiento delantero del X-62A VISTA en la Base de la Fuerza Aérea Edwards, el 2 de mayo, para experimentar de primera mano este avión único, que incorpora aprendizaje automático y software altamente
especializado para probar vuelos autónomos y otras capacidades de vanguardia.

La característica más potente del X-62A, llamado VISTA (Aeronave de prueba de simulación en vuelo variable), es su nueva herramienta para desarrollar y probar capacidades de vuelo en tiempo real mediante el aprendizaje automático y la integración de agentes en vivo. Esta tecnología se probó con éxito a través de una colaboración con el programa Air Combat Evolution de DEFENSE ADVANCED RESEARCH PROJECT AGENCY. El equipo fue finalista del Trofeo Robert J. Collier 2023 como reconocimiento a sus grandes esfuerzos.

“El potencial para el combate autónomo aire-aire ha sido imaginable
durante décadas, pero la realidad había sido un sueño lejano, hasta ahora. En 2023, el X-62A rompió una de las barreras más importantes de la aviación de combate. Este es un momento de transformación, todo posible gracias a los importantes logros del equipo ACE”, dijo Kendall.

La división de investigación de la ESCUELA DE PILOTOS DE PRUEBAS DE LA FUERZA AÉREA de EE. UU. lidera las responsabilidades generales de gestión del programa para el X-62A. El objetivo principal de la división es liderar investigaciones que aceleren las capacidades multidominio del combatiente y al mismo tiempo acepten desafíos.
probar rápidamente nuevas tecnologías.

Hace unos cuatro años, el equipo se propuso mejorar las ya únicas capacidades de entrenamiento de prueba de VISTA, que históricamente le permitieron simular las características de vuelo de otro avión, pero no se detuvieron ahí. Crearon una capacidad completamente nueva, una que aún no existía en el Departamento de Defensa. Vieron la posibilidad de transformar VISTA en un vehículo para incorporar y probar la la inteligencia artificial. Las capacidades iniciales de VISTA fueron reinventadas, reelaboradas y ampliadas fundamentalmente, culminando en una actualización que se completó en 2022 e incluyó tres nuevos paquetes de software altamente especializados con significativamente más potencia informática para que todo funcione.

“La IA realmente toma la tecnología más capaz que tienes, la combina y la utiliza en problemas que antes tenían que resolverse a través de la toma de decisiones humanas. Es una automatización de esas decisiones y es muy específica”, dijo Kendall.

Durante el vuelo de Kendall, el X-62A realizó una variedad de maniobras tácticas reales que respondieron en tiempo real a una amenaza simulada. Completó una serie de puntos de prueba, que formaban parte de un combate aéreo dentro de una operación que validó los modelos y probó su rendimiento. Sentado en el asiento delantero, los controles del X-62A permanecieron sin tocar tanto por Kendall como por el piloto de seguridad en el asiento trasero durante todo el vuelo de prueba.

Las exigencias operativas de los eVTOL acortan la vida útil de las baterías.

Sabemos que el primer avión eléctrico voló hace más de cincuenta años, y desde entonces cada vez que han vuelto han tenido el mismo problema: si bien los motores son fiables y ligeros, las baterías pesan demasiado y tienen una densidad energética baja.

Con el boom de los vehículos eléctircos terrestres (EV), parece que se ha revivido la fiebre de la aviación eléctrica, y se está intentando utilizar las mismas baterías de litio.

E igual que un motor de automoción puede no ser idóneo para un avión, porque el vehículo de tierra funciona normalmente al 30-40% de su potencia máxima, que sólo necesita en picos mientras que el motor de avión funciona al 75-85% de manera constante, puede que la solución de las baterías eléctricas de los EV no sean la mejor.

Aunque el rendimiento de las baterías de iones de litio en los EVs está bien estudiado, su rendimiento en la industria de la aviación es relativamente desconocido, y aún no está claro cómo estas baterías resistirán las duras condiciones a las que estarán sometidas durante las operaciones de taxi aéreo eVTOL.

Por ello, investigadores del Laboratorio Nacional Oak Ridge (ORNL) en Tennessee llevaron a cabo un estudio sobre los efectos que el perfil de vuelo de una aeronave eVTOL tendrá en las baterías de EV después de ciclos repetidos, simulando operaciones típicas de taxi aéreo.

El equipo de investigación encontró que las demandas de potencia y rendimiento para el vuelo eVTOL reducen el rendimiento y la longevidad de la batería, lo que podría representar una amenaza para la seguridad. También podría aumentar el costo del mantenimiento de las aeronaves, ya que las baterías necesitarán ser reemplazadas con frecuencia. Una vez más, la demanda de potencia del motor, debido al perfil de utilización distinto en un tipo de vehículo y otro, puede suponer un problema.

Cuando los eVTOL despeguen verticalmente, las baterías están sujetas a una demanda de energía muy alta, y según el investigador Ilias Belharouk será el momento en el que la batería puede ser más peligrosa.

Belharouak y su equipo tienen como objetivo mitigar este problema avanzando en la tecnología de baterías de iones de litio y optimizando las celdas de batería para los vuelos eVTOL. Pero para encontrar las mejores soluciones, primero necesitaban definir a fondo el problema. Con este estudio, el equipo buscó determinar exactamente qué sucede con las baterías a nivel subcelular cuando se someten a las altas demandas de potencia de los vuelos eVTOL con ciclos repetidos. Los hallazgos ayudarán a informar su búsqueda de nuevos materiales, especialmente para los electrolitos de la celda, lo que podría llevar a un mejor rendimiento y resistencia.

Altas Demandas de Potencia

Como hemos comentado anteriormente, nada tienen que ver el perfil de uso de las baterías de litio en los eVTOL con el perfil de uso en los automóviles.

Las baterías eléctricas para taxis aéreos también soportarán cargas y descargas más frecuentes y rápidas que los vehículos terrestres. El perfil de uso del coche hace que la mayor parte de su vida operativa esté estacionado. Sin embargo, el perfil de uso de una aeronave comercial es el contrario: si la aeronave está parada está perdiendo dinero. De hecho, en los estudios de viabilidad de los eVTOL suelen citarse tasas de utilización mucho más altas que las de los helicópteros, debido a su supuesto menor mantenimiento. De sobra es conocido que los aviones de aerolínea paran lo mismo. Así que mientras que el perfil de uso de un automóvil es de viajes de entre 10 y 50 minutos con largos periodos de inactividad, se espera que el perfil del eVTOL sea de vuelos durante todo el día, con ciclos de vuelo de 10 minutos intercalados con recargas rápidas, normalmente de otros diez minutos. «Realmente necesitas cargarlos muy rápido y descargarlos muy rápido… lo que ejerce mucha presión sobre estas baterías», dijo Belharouak.

Belharouak y su equipo en ORNL realizaron pruebas simuladas de baterías eVTOL utilizando baterías representativas que construyeron en el lugar en la Instalación de Fabricación de Baterías del Departamento de Energía. Monitorizaron el rendimiento de la batería durante el ciclo y luego evaluaron los componentes de la batería posteriormente para verificar la corrosión y otros cambios químicos o estructurales utilizando un microscopio electrónico de barrido.

«Tu batería no es solo la vida útil de 1,000 ciclos. Es lo que sucede dentro de un ciclo lo que te dice si tu sistema funcionará o fallará», dijo Marm Dixit, el investigador principal del estudio. Y los riesgos son mayores, ¡no son vehículos que puedas parar en un arcen en caso de problemas, estan volando!

Para la simulación, los investigadores emplearon una alta tasa de descarga durante 45 segundos, lo que se espera que dure el despegue vertical más la transición a crucero, seguido de una descarga a baja velocidad para simular el vuelo de crucero.

Durante el ciclo de crucero, la batería recuperaba su condición normal. Pero la sucesiva repetición de este tipo de ciclos rápidos e intensos hacía que las baterías, electrolito y ánodo se degradaran, no así el cátodo.

La solución ¿está en el electrolito?

Así que estamos con el problema de siempre, pero ampliado. No sólo necesitamos una batería de mayor densidad energética, sino que además deben aguantar estos ciclos tan distintos a los de los automóviles.

Y mientras se dependa de las baterías de litio, hay que mejorarlas. Los investigadores están constantemente buscando maneras de hacer que las baterías funcionen mejor y duren más utilizando diferentes materiales para sus componentes, incluyendo ánodos, cátodos y electrolitos. Por ejemplo, el fabricante de baterías Amprius está utilizando ánodos de nanocables de silicio en las baterías que ofrece para aplicaciones de aviación eléctrica.

Belharouak y su equipo creen que la solución para hacer que las baterías de iones de litio sean más adecuadas para las operaciones de eVTOL radica en el electrolito, el medio entre el cátodo y el ánodo de una batería por el que los iones de litio viajan durante la carga y descarga.

Si bien el equipo de ORNL se está enfocando en soluciones de electrolito por ahora, el objetivo final del programa de investigación es eventualmente desarrollar una química de batería completamente nueva que podría reemplazar a las baterías de iones de litio para aeronaves eléctricas.

Ejemplos de nuevas químicas de baterías que podrían ser prometedoras para aplicaciones de aviación incluyen las baterías de estado sólido, que reemplazan el electrolito líquido o en gel con un material sólido, o las baterías de litio-azufre, ambas de las cuales pueden ofrecer las mayores densidades de energía necesarias para habilitar vuelos de mayor alcance.

Belharouak enfatizó que cualquier tipo de baterías destinadas a aplicaciones de eVTOL «deberán ser entendidas y comprendidas en función del conjunto de protocolos a los que van a ser sometidas, no solo en función de la densidad de energía y potencia».

Fuentes: AIN Online y Oak Ridge National Laboratory