H2Fly pone el récord (no oficial) de altitud para aviones de hidrógeno por encima de los 7000ft

H2Fly

«Más alto, más rápido, más lejos» y, ahora, más verde. Primero mantenerse en el aire unos minutos. E ir ampliando la envolvente de vuelo poco a poco, con vuelos de más alcance, con cruces de estrechos, mares y océanos; con vuelos de mayor altitud, sobrevolando campos, ciudades y cordilleras.

Los aviones eléctricos y los de hidrógeno están ahora recorriendo el mismo camino que recorrieran desde 1903 los aviones con motores de combustión. H2Fly ha roto, en concreto, el récord de altitud de aeronaves de hidrógeno, sobrepasando los 7000 pies en un vuelo entre dos aeropuertos comerciales, Stuttgart y Friedrichshafen, cuando desplazó su aeronave cuatriplaza a la feria AERO. Durante el vuelo alcanzaron los 7230 pies con su HY4.

Este es un notable logro para H2FLY, ya que ningún otro avión de pasajeros propulsado por hidrógeno ha volado entre dos aeropuertos comerciales hasta la fecha. También estamos encantados de haber establecido lo que creemos que es un nuevo récord mundial al alcanzar una altitud de más de 7,000 pies con nuestro avión HY4. Queremos agradecer a nuestros socios desde hace mucho tiempo Aeropuerto de Stuttgart, Universidad de Ulm, DLR Stuttgart, Aeropuerto de Friedrichshafen, y AERO Friedrichshafen, por apoyarnos en nuestra misión de hacer realidad los viajes sostenibles».

Prof. Dr. Josef Kallo, co-founder and CEO of H2FLY

El avión HY4 es un demostrador tecnológico, en el que la empresa va integrando y probando las diversas soluciones. Pero la visión de futuro de la compañía es llegar a producir aerotaxis para 4-6 pasajeros y 500km de alcance, aviones de negocios para 19 personas y 1500km de alcance y aviones regionales para hasta 40 pasajeros y 2000km de alcance.

vía H2fly

APUS presenta su depósito de hidrógeno integrado en la estructura del ala

Diseño del ala con los cuatro largueros-tanques de hidrógeno

En estos días son numerosas las compañías que están presentando sus prometedores aviones a hidrógeno. Si bien la tecnología no es nueva, hasta ahora todas las empresas han fallado en lo básico: cómo almacenar el hidrógeno. APUS ha presentado una solución que parece novedosa e interesante. Se aleja de los grandes depósitos cilíndricos dorsales o situados tras el pasaje, y opta por integrarlos en la estructura del ala.

Sección del ala de un avión APUS donde se ven los cuatro largueros y el revestmiento

La estructura del ala, multilarguero, está diseñada íntegra en fibra de carbono. Si bien las estructuras multilarguero no son novedosas, ni lo son las alas con depósitos de combustible integrados, sí lo es el utilizar cuatro largueros tubulares como depósitos de hidrógeno.

Los cuatro largueros-depósitos estarían presurizados, permitiendo por un lado soportar las cargas típicas de cualquier ala en vuelo y además transportar el hidrógeno, ahorrando espacio y peso, en comparación con otras aproximaciones tomadas hasta ahora para los tanques de hidrógeno.

Familia de aviones APUS, con el e2 en el centro, los aviones carguero (1770kg) y pasajeros (12 plazas) arriba y a la derecha, y el banco de ensayos desarrollado junto con Rolls Royce abajo a la izquierda.

Y éste es el diseño patentado por APUS que pretende montar en su familia de aviones, aún en desarrollo, que va desde el i2 cuatriplaza y bimotor hasta los más grandes para pasajeros, carga y banco de ensayos.

La empresa cuenta con certificado de DOA bajo EASA, con lo que espera poder certificar sus propios productos.

Estarán presentes en la próxima feria de ILA Berlín, y nosotros deseosos de ver lo que presentan y cómo evoluciona el proyecto.

Fuente: presentación en pdf de APUS

Piasecki espera ser quien vuele el primer helicóptero híbrido H2-eléctrico

Imagen artística del PA-890

Piasecki es conocido por ser pionero en sus desarrollos de helicópteros compuestos, aquellos que para aumentar su velocidad de crucero tienen una o más hélices que impulsan hacia adelante el helicóptero. Y ahora quieren ser pioneros en los helicópteros con hidrógeno, en concreto en los helicópteros híbridos hidrógeno-eléctrico, volando el primer helicóptero tripulado alimentado con una pila de hidrógeno.

Durante el último Vertical Flight Society H-2 Aero Symposium & Workshop, John Piasecki, su CEO y presidente, anunció que espera que el primer vuelo de su helicóptero compuesto PA-890 se produzca en 2023, y que su objetivo de certificación es 2024.

El hidrógeno

Según ha dicho Piasecki, hay tres tecnologías que pueden permitir descarbonizar la aviación: el hidrógeno, las baterías y el combustible sostenible (conocido por sus siglas en inglés SAF).

Piasecki explicó que las baterías se habían caído de sus diseños por varios motivos, principalmente su coste y no cumplir con los requerimientos necesarios para las misiones de sus aeronaves, en definitiva, el ya conocido problema de que no pueden almacenar suficiente energía con un peso razonable.

Comparación de alcance objetivo para los diseños de Piasecky, de costes de operación, y de descenso de emisiones, según las distintas fuentes de energía

Además apuestan por la tecnología de la pila de hidrógeno, en lugar de utilizarlo directamente como combustible de un motor de explosión, porque minimiza el número de piezas rotando y vibrando en el helicóptero, y también simplifica la distribución de potencia, eliminando los pesados árboles de transmisión y cajas de engranajes.

Además la pila de hidrógeno permite una mejor respuesta a la hora del repostaje, más rápido que las baterías tradicionales.

En cuanto a otros estudios, adaptar a los operadores a estas aeronaves va a requerir formación en cuanto a manejo de estas células, un cambio en la logística del combustible, desde su distribución a su almacenamiento y su suministro a la aeronave, un cambio en las señalizaciones de peligro en las instalaciones…

Según la presentación de Piasecki, la percepción del público parece que va cambiando. Por fin parece que van olvidando del Hindenburg y comprenden que la propuesta de helicóptero con pila de hidrógeno nada tiene que ver con los Zeppelines, que el hidrógeno no es peligroso, e incluso es más seguro que el petróleo y sus derivados en muchos aspectos.

Las baterías de hidrógeno están siendo desarrolladas por HyPoint. El PA-890 pretende montar las HyPoint SPM20. Cada una de las células puede proporcionar 20kW de pico de potencia. Una batería de células de hidrógeno instaladas en el centro del fuselaje (cerca del centro de gravedad de la aeronave) suministrarían 560kW de potencia.

El hidrógeno se almacena en sendos tanques, que a 700 bares de presión contendrían 19.3kg de hidrógeno cada uno.

La aeronave

El PA-890 es un helicóptero compuesto con rotor de giro , con una hélice impulsora que aumenta su velocidad en vuelo. Los helicópteros, si bien tienen la virtud de poder volar a punto fijo y aterrizar en vertical en lugares confinados, tienen una velocidad de crucero limitada por el propio rotor: la velocidad de avance del helicópteor combinada con la de rotación de las palas hacen que éstas entren en régimen sónico, limitando de ese modo la velocidad máxima que se puede alcanzar. El diseño, ya probado por Piasecki, de helicóptero compuesto trata de solventarlo utilizando distintas soluciones técnicas:

  • La hélice trasera impulsa el helicóptero hacia adelante, aumentando la velocidad de crucero
  • El ala descarga el rotor, haciendo que no toda la sustentación dependa de éste. Además pivota sobre su encastre, situándose en posición vertical, para reducir la resistencia durante despegues, aterrizajes y vuelos a punto fijo.
  • El rotor, al estar descargado de dar toda la sustentación, puede reducir su velocidad de rotación, permitiendo de este modo retrasar el punto en el que la composición de velocidades de avance y rotación se vuelve sónica, y aumentando así la velocidad límite de crucero de un ala rotatoria.

El PA-890 no está destinado al mercado de la movilidad aérea urbana. Se va a certificar bajo FAA parte 27, con lo que se espera que su certificación sea más rápida y convencional que la de cualquier aparato eVTOL. Su mercado objetivo son los tradicionales de los helicópteros medios (vuelos medicalizados, policía, enlace con plataformas petrolíferas, etc), y como secundario la movilidad aérea urbana.

Fuentes

JMB Aircraft ha volado su VL-3 con un motor de turbina

El VL-3 de JMB Aircraft es conocido por ser uno de los ultraligeros y VLA, según la masa y el país donde esté certificado, más rápido del mundo, junto con los Blackshape. Su crucero con motor de pistón es superiror a los 200km/h (cómo de superior, depende de la motorización), y una velocidad no exceder de 340km/h. Y ahora, a sus diferentes motorizaciones Rotax, hay que añadir una con turbina.

JMB ha publicado una nota de prensa anunciando que el 4 de abril volaba por primera vez el VL-3, a manos de su CEO y piloto de pruebas Jean-Baptiste Guisset, con un turbohélice Turbotech en el aeródromo de Valenciennes.

Tras seis meses de desarrollo, cincuenta horas de ensayos en tierra, 30 de las cuales a máxima potencia, el avión realizaba sus primeras 20 horas de vuelo en la semana que ha seguido a su vuelo inaugural sin ningún problema técnico.

VL-3 con turbina

Los primeros vuelos han sido muy prometedores. Continamos con los ensayos para validar la envolvente, pero las ventajas son ya visibles: sin vibraciones, más silencioso que el VL-3 con el Rotax 915, mejor fiabilidad, y un tiempo entre overhauls multiplicado por dos. Más aún, la turbina es más sencilla de operar que el motor de pistones, al tener una sola palanca y la FADEC para gestión electrónica del motor. También hemos apreciado una mejora en el consumo en comparación con los turbohélices tradicionales, gracias al intercambiador de calor. El precio del queroseno es también una ventaja frente a los precios de la gasolina de 95 octanos normalmente utilizada (por los Rotax). Ya tenemos un segundo avión equipado con la turbina, y comenzará los ensayos en dos semanas. Hemos elaborado un programa avanzado de pruebas en vuelo para probar en los próximos meses la envolvente de la turbina.

Jean-Marie Guisset en la nota de prensa.
VL-3 con turbina

Según la web del fabricante del turbohélice, que pesa 80kg, el motor entrega 131 CV con un consumo de 19 litros/h, lo que mejora el consumo ofrecido por un Rotax 912 de 100 caballos. Tiene un tiempo entre overhauls de 3000h y puede funcionar con distintos combustibles (Jet-A1, Diesel, UL91, AVGAS, Bio-Fuel), e incluso podrá aceptar en un futuro ¡hidrógeno!

Airbus, GE y Safran ensayarán un motor a hidrógeno en un A380

El primer A-380 montará un motor de GE y depósitos criogénicos con hidrógeno

Airbus, General Electric y Safran han anunciado hoy que modificarán el A-380 número de serie 001 como banco de ensayos para motores de hidrógeno.

Instalarán en la zona trasera del fuselaje un ala embrionaria en cuya punta irá instalado un motor GE Passport turbofan. Este motor deberá ser modificado para aceptar el hidrógeno como combustible. Será alimentado desde cuatro depósitos criogénicos, situados dentro del fuselaje.

El objetivo de los tres socios es demostrar que esta aviación es viable y poner en servicio un avión cero emisiones en 2035.

Vista desde la parte trasera izquierda del A380 en la que se ve el motor y los depósitos criogénicos

El hidrógeno aparece de tarde en tarde en este blog, y en el mundo de la aviación, como promesa de futuro para solventar las emisiones del sector. De hecho, el primer avión a hidrógeno voló hace ya 66 años. Los análisis nos dicen que es seguro, y que tan solo hace falta que la economía de escala lo haga viable, que haya un ecosistema del hidrógeno suficientemente amplio e implantado como para que la logística asociada al mismo sea económica y viable. Y parece ser que esa logística, esa posibilidad de producir hidrógeno a gran escala, transportarlo, distribuirlo… será posible en un futuro cercano, teniendo en cuenta el creciente interés de todas las industrias, aviación, naval, automoción y ferrocariles, por el hidrógeno.

Según la nota de prensa de Airbus:

A-380 MSN 001 concertido en banco de ensayos

El objetivo del programa es probar en tierra y en vuelo un motor de combustión directa alimentado por hidrógeno, con vistas a la puesta en servicio de un avión con cero emisiones en 2035. La demostración se basará en un A380 que funciona como banco de pruebas en vuelo y que está equipado con depósitos de hidrógeno líquido preparados en las plantas de Airbus en Francia y Alemania. Airbus también definirá los requisitos del sistema de propulsión de hidrógeno, supervisará las pruebas en vuelo, y proporcionará la plataforma del A380 para probar el motor de combustión de hidrógeno en la fase de crucero.

CFM International (CFM está compuesto por Safran y General Electric) modificará la cámara de combustión, el sistema de combustible y el sistema de control de un motor turbofán GE PassportTM que funcionará con hidrógeno. El motor, ensamblado en EE. UU., se seleccionó para este programa por su tamaño físico, su turbomáquina avanzada y su flujo de combustible. Se montará a lo largo del fuselaje trasero del banco de pruebas para controlar así las emisiones del motor, incluyendo las estelas de condensación, de forma separada a las emisiones de los motores que propulsan la aeronave. CFM llevará a cabo un programa intensivo de pruebas en tierra antes de iniciar las pruebas en vuelo del A380.

Presentación del demostrador ZEROe

Este es el paso más importante que ha dado Airbus para adentrarse en una nueva era de vuelos propulsados por hidrógeno desde que presentamos nuestros conceptos ZEROe en septiembre de 2020. Esta alianza internacional, que combina la experiencia de fabricantes de motores estadounidenses y europeos para avanzar en la tecnología de combustión de hidrógeno, envía un mensaje inequívoco del compromiso adquirido por nuestro sector de hacer realidad los vuelos con cero emisiones.

Sabine Klauke, Chief Technical Officer de Airbus

La combustión de hidrógeno es una de las tecnologías base que estamos desarrollando y consolidando dentro del programa CFM RISE. Uniendo las capacidades y la experiencia de CFM, de nuestras empresas matrices y de Airbus, hemos creado el equipo perfecto para demostrar satisfactoriamente un sistema de propulsión de hidrógeno.

Gaël Méheust, Presidente y CEO de CFM International

CFM y Airbus comparten su compromiso como firmantes del objetivo del Grupo de Acción para el Transporte Aéreo en octubre de 2021 de lograr un sector de la aviación con cero emisiones netas de carbono para 2050. Para cumplirlo, se proponen desarrollar y poner a prueba la tecnología necesaria para que estas aeronaves de cero emisiones sean una realidad dentro del ambicioso calendario que se ha definido.

Airbus ha mantenido una larga relación con CFM y sus empresas matrices, GE Aviation y Safran Aircraft Engines y, juntos, los socios cuentan con un excelente historial de productos de alto rendimiento que satisfacen las necesidades de las aerolíneas clientes.

Para saber más, esta presentación de 1h de duración, en la que Airbus ha hecho público este demostrador.

ZEROe