RACER, el helicóptero compuesto de Airbus, supera los 400km/h de vuelo de crucero

En el más rápido —del tradiconal más rápido, más alto, más lejos— los helicópteros se han visto limitados por su propia forma de lograr sustentación: el rotor dando vueltas. Como hemos explicado en otras ocasiones, el hecho de que la velocidad de la punta de pala sea la resultante de componer la velocidad de rotación del helicóptero más la de translación, hace que sea en la punta de pala donde se alcance antes el Mach de diverencia, y portanto el límite de velocidad horizontal de vuelo.

 Por mucho que se mejoren las puntas de pala de los helicópteros, la velocidad de vuelo estará siempre limitada por una cota superior, marcada por el momento en el que la punta de pala alcanza velocidades supersónicas. El ala embrionaria del helicóptero compuesto descarga al rotor en su trabajo de proporcionar sustentación, permitiéndole girar más lento, y así aumentando la velocidad de avance que puede alcanzar el helicóptero compuesto, impulsado por las hélices «de avión» que monta.

Aunque hay que tener cuidado con la integración del ala y el flujo del rotor, puesto que el ala no solo tendrá la corriente de aire que le incide por el vuelo en avance, sino que quedará sumergida en el flujo de aire descendente del rotor. Y poner atención al diseño para vuelo a punto fijo, pues en ese caso el ala «estorba».

Trabajando la punta de pala del rotor, como se hizo con el Lynx, el helicóptero convencional más rápido alcanzó los 401km/h. Los helicópteros compuestos alcanzan velocidades algo superiores, como el X2 (481km/h) y el X3 (472km/h, alcanzó 483 en un picado somero), y ahora el RACER, habituales en este blog.

El RACER, desarrollado como proyecto del Clean Sky 2, ya había alcanzado los 400km/h. En esta ocasión, los 420km/h se han obtenido en vuelo de crucero, no como velocidad punta.

Nota de prensa:

Airbus Racer supera los 400 km/h

El demostrador de helicóptero de alta velocidad Racer de Airbus, desarrollado en el marco del proyecto europeo de investigación Clean Sky 2, ha alcanzado su objetivo de velocidad de crucero rápido de 407 km/h (220 kts). El 21 de junio, menos de dos meses después de su primer vuelo, el demostrador Racer superó su objetivo de velocidad de crucero de 407 km/h (220 kts) al alcanzar los 420 km/h (227 kts) en su configuración inicial. En sólo siete vuelos y unas nueve horas de pruebas en vuelo, se ha abierto casi toda la envolvente de vuelo.

Este logro en tan corto espacio de tiempo es realmente un testimonio del duro trabajo de nuestros 40 socios en 13 países europeos para llevar toda esta innovación al vuelo. Además de su rendimiento, el comportamiento aerodinámico y la estabilidad del avión son prometedores. Todos esperamos con impaciencia la siguiente fase de ensayos en vuelo, especialmente el modo ecológico, que nos permitirá apagar un motor en vuelo de avance, reduciendo así el consumo de combustible y las emisiones de CO2

Bruno Even, CEO de Airbus Helicopters.

La tripulación de ensayos de vuelo estaba formada por Hervé Jammayrac, piloto jefe de pruebas de vuelo, Dominique Fournier, ingeniero de pruebas de vuelo, y Christophe Skorlic, ingeniero de pruebas de vuelo. La próxima fase de las pruebas de vuelo se centrará en las operaciones con un solo motor y en la finalización de la envolvente de vuelo.

Optimizado para una velocidad de crucero de más de 400 km/h, el demostrador Racer pretende lograr la mejor relación entre velocidad, rentabilidad y rendimiento de la misión. El Racer también apunta a una reducción del consumo de combustible de alrededor del 20%, en comparación con los helicópteros de la generación actual en la misma categoría de peso máximo de despegue, gracias a la optimización aerodinámica y a un innovador sistema de propulsión de modo ecológico. Desarrollado con Safran Helicopter Engines, el sistema eco-mode híbrido-eléctrico permite que uno de los dos motores Aneto-1X se detenga durante el vuelo de crucero, contribuyendo así a reducir las emisiones de CO2. El Racer también pretende demostrar cómo su particular arquitectura puede contribuir a reducir su huella acústica operativa.

Opinión: ¿Y si el futuro de las eVTOL fuera servir en la Armada? (y en cualquier otro ejército)

Las aeronaves eVTOL son aeronaves de despegue y aterrizaje vertical, y además eléctricas. Les hemos encontrado muchas pegas, como que son caras y los números que arrojan los drones de transporte de mercancías no acompañan, difíciles de certificar, peligrosas en su operación urbanaLa vida útil de sus baterías es más corta que la de los vehículos terrestres equivalentes, no tienen por qué ser el medio más comodo para los pasajeros, además de acarrear problemas de ruidos, la densidad energética de las baterías y por tanto la autonomía del vehículo es pobre… De hecho, cuando analizamos con Brucknerite la hoja de ruta neerlandesa para la descarbonización de la aviación, llegamos a dos conclusiones: El mejor transporte público eléctrico para una ciudad es el metro/ferrocarril urbano; y los eVTOL podrían tener sentido para comunicar poblaciones aisladas, donde un transporte convencional puede llevar horas por carretera y sólo minutos por el aire, como el caso de estudio práctico que defiende NUNCATS. Y ya parece que los inversores huyen de los eVTOL.

Pero…¿Y si hubiera un cliente para el que todas esas pegas no existieran?

  • Coste: En un entorno militar, si el objetivo es suficientemente importante, el coste pasa a un plano secundario. Y realizar entregas de suministros vitales, en lugares de dificil acceso, o peligrosos… es uno de esos casos.
  • En cuanto a la certificación, no es lo mismo certificar una aeronave para uso comercial, que para uso recreativo que para uso militar.
  • Respecto a la peligrosidad por su uso sobre zona poblada, su uso militar anularía directamente este inconveniente. El uso se realizaría normalmente sobre espacios aéreos clasificados como «deltas» o «papas», cuando no directamente sobre zonas segregadas, o sobre el mar en el caso del dia a día en tiempo de paz.
  • El problema de la vida de las baterías es el distinto ciclo de carga que tiene un vehículo terrestre privado que una aeronave comercial. El vehículo privado está un 80% o más del tiempo parado, mientras que en uso comercial el uso tiende al 100%, pues de otro modo no sería rentable. En una operación de estafeta, llevando carga, suministros o personal, el uso no es tan intensivo como en una operación comercial. Por otro lado, el coste de reponer baterías no es tan problemático como en una operación comercial.
  • En cuanto a la costumbre de los pasajeros a los vuelos en condiciones desagradables, movidos o peligrosos… digamos que en el caso de los militares son condiciones que ya se presuponen. Lo mismo ocurre con el entrenamiento del usuario. Un pasajero civil no tiene necesariamente entrenamiento en el uso seguro de aeronaves, lo que lleva a tener que tener especial precaución con el diseño de los vertipuertos y de las aeronaves, para evitar potenciales riesgos a los usuarios. En el caso militar es de asumir que si las aeronaves eVTOL se convirtieran en elementos normales, recibirían su correspondiente curso de familiarización con la nueva herramienta de trabajo.
  • Y que sean eléctricas no implica necesariamente el uso de grandes baterías, también pueden ser híbridas, sacando el litio de la ecuación.

La propuesta que hacemos en el título de usarlo como aeronaves COD autónomas viene de la asumción de que en los buques con plataformas de vuelo es más sencillo incrustar un nuevo tipo de aeronave. Los buques en sí ya están dotados de plataformas donde los helicópteros pueden aterrizar y sus dotaciones están entrenadas para gestionarlo. Y contar con uno o dos drones utilitarios para realizar labores de estafeta podría ahorrar costes frente al uso de helicópteros convencionales o naves de superficie más pequeñas tripuladas.

La siguiente integración obvia debería ser en las unidades de los ejércitos de tierra.

Por cierto, la idea no es nueva, de hecho las imágenes mostradas en esta entrada corresponden al concepto ARES, de 2014. Entre 2011 y 2013 el cuerpo de marines utilizó el K-MAX para estos menesteres, y tanto el US Army como la USAF están colaborando con los desarrolladores de eVTOL, y han probado algunos drones de despegue vertical en el último RIMPAC. ¿Veremos un movimiento similar en Europa con el ecosistema de empresas eVTOL nativo? Sería interesante ver a Lilium, Volocopter, o la española Crisalion de maniobras, y colaborando con nuestros ejércitos. Tal vez estas empresas encontrarían la inversión que les falta para terminar de poner en vuelo sus aeronaves, y las aeronaves encontrarían un nicho de mercado donde sus principales inconvenientes no son tales.

[Podcast] Aeronaves eVTOL, vistas desde el punto de vista de un bombero

Hoy retomamos el ritmo habitual de publicación, tras el extra de la semana pasada. Hoy sí toca episodio, nada de extras debidos a que la actualidad nos descabala la programación. Y aparcamos un poco el tema militar y de defensa.

Y vamos a hablar acerca de las aeronaves eléctricas de despegue y aterrizaje vertical o eVTOL.

En el blog las hemos analizado bastante, y hemos sido muy críticos con ellas, pues creemos que tienen demasiados puntos abiertos por cerrar, como resumimos al comienzo del episodio.

Pero jamás nos habíamos parado a pensar cómo lo vería un bombero. Por eso hemos traído a Gustavo Flamme, para que nos de su punto de vista. En gran parte se basa en lo que ha vivido con los coches eléctricos, y añadimos depsués algunos casos más específicos que afectan tan solo a este tipo de aeronaves. ¿Te quedas con nosotros?

El podcast se puede encontrar en Amazon MusicApple PodcastGoogle PodcastIvooxSpotify. ¡Ah! y como Google Podcast desaparece, lo podéis encontrar ya en Youtube / Youtube Music.

pd: Si la intro y la despedida os son familiares, que no os sorprenda. En un ejercicio de nostalgia podcasteril he hablado con Javier Lago para pedirle permiso y utlizar la introducción que hizo para el que, si no recuerdo mal, fue el primer podcast español sobre aviación: Remove Before Flight RBF podcast

Leonardo realiza pruebas del AW609 en la cubierta del Cavour

Si hay un programa que vaya con retraso es la aeronave de ala rotatoria 609, antes Bell-Boeing, ahora Leonardo. ¡Si en el 97 ya hice un trabajo sobre ella!

Como toda aeronave de rotor basculante, no ha estado exenta de problemas de desarrollo, en especial en las bancadas de sus motores. Pero hoy, 26 de junio, Leonardo ha anunciado el éxito de sus pruebas embarcadas.

Debajo puede verse la nota de prensa, así como un vídeo de las pruebas y otro con una entrevista.

La aeronave de rotor basculante, ya saben los fieles lectores, se trata de una aeronave de aterrizaje y despegue vertical, que permite volar a punto fijo y en modo helicóptero con rotores lado a lado, pero también permite volar como si fuera una aeronave de grandes hélices. El tamaño de las mismas limita la velocidad máxima alcanzable por la aeronave, por eso los siguientes desarrollos de Bell implican el plegado de las palas para un vuelo de crucero de alta velocidad. Y, aún así, logra aunar lo mejor de las aeronaves de ala rotatoria con las de punto fijo.

Los inconvenientes principales son la dificultad de vuelo, así como la de diseño del ala, que sufre durante la rotación de la bancada basculante los esfuerzos a los que le someten los efectos de precesión giroscópica.

Nota de prensa

El programa AW609 de rotores basculantes alcanzó otro hito importante en la industria después de su primer exitoso ensayo en un buque, que se llevó a cabo recientemente con el apoyo de la Marina italiana. Del 3 al 12 de abril, la aeronave AW609 AC4, completamente representativa de la configuración final de producción, realizó pruebas de demostración al trasladarse desde las instalaciones de Leonardo en Cascina Costa (Samarate) hasta la Base Naval de Maristaer Grottaglie. El tiltrotor, con pilotos de prueba e ingenieros de vuelo de Leonardo (apoyados por personal de la Marina italiana para las operaciones embarcadas), despegó desde la base con destino al portaaviones italiano (ITS CAVOUR – Buque Insignia de la Flota de la Marina), a 20 millas náuticas de la costa, mostrando su enfoque efectivo, aterrizaje estable en cubierta y capacidades de toma de tierra.

Pruebas

Durante la demostración, el AW609 brindó una oportunidad única para fortalecer aún más la conciencia de las ventajas sobresalientes del rotor basculante de Leonardo en un entorno marítimo dedicado. Esto demuestra cómo el primer rotor basculante del mundo destinado a obtener una certificación civil cumple con rigurosos estándares operativos y de seguridad. Por lo tanto, está idealmente posicionado para satisfacer una variedad de necesidades gubernamentales y de servicios públicos, tanto en Italia como a nivel global.

Entrevista

Como parte integral de la fase de demostración, se llevó a cabo una campaña de pruebas inicial desarrollada y ejecutada en un entorno sintético completo utilizando el simulador de desarrollo e ingeniería AW609, que se encuentra en Cascina Costa. Las aplicaciones de gemelos digitales proporcionaron una evaluación preliminar de las actividades y maniobras, que posteriormente se llevaron a cabo en operaciones en beneficio del desarrollo de capacidades, reducción de tiempo, seguridad y sostenibilidad. Los procedimientos de aterrizaje y despegue en cubierta se realizaron en más de 15 condiciones diferentes (incluidas las condiciones de viento), con enfoque recto y lateral, aterrizaje vertical, despegue vertical y salida lateral.

Las pruebas de demostración son el último paso tomado en el marco de las actividades llevadas a cabo por un grupo de trabajo conjunto establecido en 2022, que incluye a Leonardo, la Marina italiana, el Ejército italiano y la Guardia di Finanza (Policía de Aduanas de Italia). El grupo de trabajo tiene como objetivo evaluar el potencial de las tecnologías de tiltrotores como capacidades complementarias a los activos ya en uso entre los servicios gubernamentales, proporcionando una capacidad de largo alcance rápida con despegue y aterrizaje verticales y crucero rápido, por encima del clima gracias a la cabina presurizada única y el rendimiento a gran altitud del AW609. La evaluación realizada por el grupo de trabajo ayudaría a definir los beneficios para el transporte logístico (despegue/aterrizaje vertical, largo alcance, conexión rápida de punto a punto con crucero por encima del clima) y, en el futuro, para la vigilancia marítima (despegue/aterrizaje vertical, transferencia rápida al área de patrulla y mayor cobertura de área).

Tras la primera campaña de pruebas en buques, Leonardo iniciará una evaluación detallada y análisis de los datos recopilados. Esto permitiría posibles pruebas adicionales para mejorar aún más los enfoques y potenciar las mejoras en la plataforma para operar en el entorno naval/embarcado.

El AW609 destaca por proporcionar un transporte rápido de punto a punto a largas distancias, permitiendo un acceso oportuno a ubicaciones remotas y alojando hasta nueve pasajeros en la comodidad de una cabina presurizada. Está diseñado para transformar una variedad de misiones, incluyendo servicios públicos y funciones gubernamentales. Hasta la fecha, el programa de desarrollo ha acumulado más de 1,900 horas de vuelo en Italia y Estados Unidos.

El AW609 aprovecha capacidades y habilidades industriales y tecnológicas únicas, lo que convierte a Leonardo en un actor destacado en el emergente dominio de las aeronaves de alas rotatorias rápidas, donde las arquitecturas de tiltrotores demuestran ser cada vez más la mejor solución para satisfacer las futuras necesidades operativas

Sikorsky ensaya un «tail sitter» como aeronave VTOL para DARPA

Una aeronave VTOL es aquella que despega y aterriza en vertical. Y hay muchas formas de lograrlo, bien con alas rotatorias, como los helicópteros, bien con rotores basculantes como los convertiplanos… Y, como todo diseño, cada cual tiene sus ventajas y desventajas.

Los tail-sitter son aquellas aeronaves VTOL que despegan desde una posición morro arriba, sentadas en su cola. Son, posiblemente de los diseños más antiguos que hay, por su simplicidad.

Ya sabemos que los helicópteros, siendo una excelente máquina VTOL, tiene como inconvenientes su elevado consumo y su limitada velocidad de crucero.

Los convertiplanos tienen como desventaja la complejidad de los mecanismos para bascular el rotor, los problemas estructurales que introduce la precesión giroscópica del mismo, y el coste que tienen, amén de la resistencia aerodinámica y los efectos que tiene el que el ala esté en perpendicular del flujo del aire de los rotores durante el vuelo «como helicóptero», salvo que el ala entera pivote, y no solo los rotores, lo que trae otro montón de problemas.

Los tail-sitter carecen de todos estos problemas. Son aeronaves «convencionales», con un par de rotores más grandes, lo suficiente como para dar un empuje igual al peso y levantar toda la aeronave y su carga de pago, pero no tiene ningún tipo de mecanismo adicional que haga pivotar los rotores. Es toda la aeronave la que rota sobre su eje de cabeceo hasta alcanzar la posiciòn horizontal de vuelo. De este modo puede conseguir mayores velocidades que los helicópteros, con mucho menor consumo, sin los problemas de los rotores basculantes que ya hemos mencionado.

Y si son tan buena solución de diseño, ¿cómo es que no tenemos los buques de nuestras armadas llenos de ellos? Porque hasta ahora se han probado tripulados. Y el mayor problema de estas aeronaves es su operación tripulada. ¿Os imagináis al piloto aterrizando con la mano en el respaldo del asiento del copiloto y mirando hacia atrás por encima del hombro? De hecho hay muchos proyectos históricos que fracasaron, entre otros motivos por este, como por ejemplo el Convair Pogo.

Pero ahora, que es la era de las aeronaves no tripuladas, puede ser su momento. Tan solo necesitan un sistema de control de ciclo cerrado y caracterizar adecuadamente las leyes que gobiernan su vuelo. Y eso es lo que va a hacer Sikorsky con esta aeronave para DARPA.

Os dejamos a continuación la nota de prensa.

Nota de Prensa:

Sikorsky, una compañía de Lockheed Martin (NYSE: LMT), está llevando a cabo pruebas de vuelo para perfeccionar las leyes de control y la aerodinámica de un novedoso sistema aéreo no tripulado de despegue y aterrizaje vertical (VTOL / UAS). Las pruebas de vuelo tienen como objetivo demostrar la eficiencia y escalabilidad de una configuración de doble rotor y ‘ala soplada por rotor’ que se coloca en posición vertical para despegar y aterrizar como un helicóptero, y transita fácilmente a un vuelo horizontal hacia adelante para misiones de larga duración, como inteligencia, vigilancia, reconocimiento y designación de objetivos.

Las pruebas de vuelo en curso respaldan la iniciativa Ancillary de la Agencia de Proyectos de Investigación Avanzada en Defensa (DARPA), que busca desarrollar un UAS VTOL X-Plane de Clase 3 que pueda operar en la mayoría de las condiciones climáticas desde cubiertas de barcos y superficies no preparadas sin infraestructura. Sikorsky es uno de varios competidores seleccionados para avanzar sus diseños conceptuales de UAS a la siguiente fase de desarrollo.

El término ‘ala soplada por rotor’ se refiere al flujo constante de aire procedente de las hhélices y que fluye a través del ala. Sikorsky eligió el diseño para reducir la resistencia en el ala en modo de hover y al transicionar al vuelo hacia adelante, y para aumentar la eficiencia de crucero y la resistencia.

El diseño es solo una de las muchas formas en que Sikorsky está avanzando en tecnologías e innovaciones de Seguridad del Siglo XXI®, dijo Igor Cherepinsky, director del grupo de prototipos rápidos Sikorsky Innovations.

«Las pruebas de vuelo están en curso para verificar que nuestro UAS de ala soplada por rotor de posición vertical pueda despegar y aterrizar verticalmente con alta estabilidad, y volar eficientemente en ala», dijo Cherepinsky. «Los habilitadores clave para la maniobrabilidad de vuelo y la escalabilidad del vehículo en el futuro son nuestro sistema de control de vuelo de autonomía MATRIX, y un sistema de rotor articulado similar a los de los helicópteros tradicionales».

Para las pruebas de vuelo que se están llevando a cabo actualmente, Sikorsky está volando un vehículo de prueba alimentado por una batería. Si es seleccionado para producir un vehículo aéreo para una futura fase ANCILLARY, Sikorsky planea construir una versión híbrida-eléctrica de 300 libras que incluya una carga útil ISR de 60 libras.

Sikorsky Innovations se formó en 2010 para superar los desafíos tecnológicos de la velocidad, autonomía e inteligencia de las alas giratorias, Aprende más sobre los logros del equipo de ingeniería en velocidad e inteligencia, y su enfoque actual en la electrificación y UAS VTOL para apoyar las misiones de Seguridad del Siglo XXI®.