Categorías
General Noticias

Airbus desvela un concepto hexamotor. Reflexiones sobre los nuevos polimotores

Dentro de los numerosos estudios que hay para encontrar una solución para los aviones del futuro, ésta es la última de Airbus, dentro de sus iniciativas ZEROe: un avión con una estructura de fuselaje convencional, ala alta, y seis góndolas autocontenidas: motor eléctrico, movido por una pila de hidrógeno, más el depósito para este gas, el equipo auxiliar, el sistema de refrigeración, y el paquete electrónico que ayuda a controlar y regular todo.

Recurre por tanto a una de las configuraciones que discutimos cuando analizamos el hidrógeno como combustible, con los depósitos cilíndricos alargados bajo el ala, pero aprovechando esta góndola para colocar el motor, dándole una apariencia más convencional que otros que hemos visto en los que motores y depósitos están en góndolas separadas.

La solución de la pila de hidrógeno no se ha escalado a gran tamaño, y con esta propuesta Airbus pretende distribuir la tecnología de pila de combustible que ya existe y escalarlo mediante la vieja táctica de poner más motores. La instalación en góndolas permite escalar el sistema agregando o eliminando góndolas, y además facilita el mantenimiento o incluso el repostaje.

Fuente: Airbus

Propulsión distribuida

La configuración adoptada por Airbus es la que hemos venido viendo en otros proyectos en las últimas entradas, como en las propuestas de CleanSky, la de Embraer, o el británico HERA, la llamada Propulsión distribuida.

Antes de continuar con este concepto, vamos a explicar otro. La fuerza con la que se mueve un reactor hacia adelante se llama empuje. El empuje se puede expresar como el gasto másico de aire que pasa por el motor multiplicado por la velocidad del aire. El rendimiento del motor está relacionado con el incremetno de velocidad que se le da al aire. Cuanto mayor es el incremento, menor rendimiento, así para aumentar el empuje de forma eficiente lo único que queda es aumentar el gasto másico que atraviesa el motor. Por eso los motores de los aviones tiene cada vez diámetros más grandes, con carenados enormes, o incluso sin carenados (concepto Open rotor o Propfan).

La propulsión distribuida busca precisamente esto. Muchos motores eléctricos moviendo muchas hélices o muchos ventiladores, para lograr el mismo efecto que en los actuales motores con un motor enorme. ¿por qué no mover ahora con un motor de combustión muchos ventiladores o hélices? Porque las transmisiones mecánicas tienen muchas pérdidas. Pero con el motor eléctrico queda solucionado.

Así pues parece que después de haber vivido una reducción paulatina de la cantidad de motores, hasta tal punto que hemos vivido la muerte de los grandes cuatrimotores, parece que el futuro pasa por la vuelta a los aviones con muchos motores.

Sin embargo, si se ha pasado de cuatro motores a tan solo dos por motivos de economía de mantenimiento, ¿por qué multiplicar ahora el número de motores?

En el caso de los motores de hélices instalados para soplar sobre las alas se nos ocurren varios motivos.

Este tipo de instalación permite soplar la capa límite, energizándola, haciendo que permanezca adherida más tiempo, y de este modo asegurando despegues más cortos y mayores ángulos de ataque. Esto favorece que la pista sea más corta, y un ángulo de subida más pronunciado, que minimiza el impacto sonoro sobre las poblaciones.

Otra de las ventajas que se tiene al utilizar hélices de pequeño diámetro es que los fenómenos de compresibilidad de punta de pala asociados con las altas velocidades de giro y altos cruceros tardan más en aparecer.

En el caso de los ventiladores entubados una de las ventajas es, como con las hélices, un funcionamiento más silencioso, y por su instalación es posible que hagan llegar menos ruido a al cabina, teniendo en cuenta que normalmente aparecen instalados te dal manera que la propia ala podría apantallar el ruido en cabina.

A la pregunta de por qué reducir el número de motores por ahorrar en mantenimiento y ahora volver a aumentarlos, se nos ocurren dos posibles respuestas:

  • En general la fiabilidad de los motores eléctricos es altísima, y el número de averías escaso, así pues es posible que el coste del mantenimiento pase a un plano secundario frente a las ventajas
  • O bien, la pista nos la da una de las frases que aparece en la nota de prensa de Airbus, es una forma rápida de escalar estas soluciones a aeronaves de mayor tamaño, demostradores tecnológicos de momento, sin la necesidad de desarrollar grandes motores eléctricos y que a su vez pesen poco para reemplazar a los actuales.
  • Además al ser motores de pequeño tamaño es más sencillo producirlos, así que tal vez el coste de bajo mantenimiento de motor eléctrico más coste ahorrado por producir motores de tamaño pequeño, que necesitan instalaciones más sencillas y menos utillaje y equipo de soporte, sea suficiente como para terminar resultando más económico que grandes motores.
Please follow and like us:
Categorías
Comercial Noticias

Clean Sky: Presentación de nuevas aeronaves y motores

Clean Sky es un progrma europeo, público-privado, que persigue mejorar las aeronaves, sus motores y su entorno, para reducir la contaminación y consumo que producen. De éste programa han salido proyectos como el BLADE, que consistía en sustituir el segmento externo del ala de un A-340 por un ala laminar de flujo natural con nuevas tecnologías para reducir el consumo.

Clean Sky acaba de presentar su feria virtual, en la que se presenta el propio programa, como distintos proyectos. Ya que la covid-19 nos tiene en casa y sin grandes eventos ni aglomeraciones, se ha presentado un hangar virtual, que se visitable desde el navegador de internet y también con gafas de realidad virtual para ver en 3D, en el que se pueden visitar distintos stands, como si una feria real se tratara, y contemplar los distintos proyectos. En cada proyecto se puede leer un breve resumen sobre él, abrir un modelo CAD en 3 dimensiones y rotarlo o hacer zoom para poder contemplarlo en detalle, y ver distintos vídeos en los que se presentan los proyectos.

De estos proyectos cabe destacar:

RACER, la evolución natural del Airbus X3. Un helicóptero compuesto.

NGCTR, una aeronave de despegue y aterrizaje vertical de rotores basculantes, desarrollada por Leonardo y heredera del Augusta Bell 609.

Hybrid Electric Distributed Propulsion Turbo Prop 50 es una aeronave que recuerda a un ATR, eso sí, con propulsión híbrida, y con el ala lleno de motores eléctricos. La propulsión distribuida permite hélices de menor tamaño, y por tanto más silenciosas, y un soplado de la capa límite, que permite mayores velocidades de pérdida, y por tanto aeronaves más STOL.

DRAGON, otra aeronave de propulsión distribuida. En este caso recuerda a un venerable DC-9, con los motores generadores de electricidad en cola, y los motores eléctricos en el intradós del ala, con lo que no se consigue el soplado de la capa límite pero seguramente se logre apantallar parte de su ruido para que no llegue a cabina.

Además de todas estas aeronaves podemos encontrar este proyecto de Safran, para estudiar la resistencia de la integración motor-aeronave y para reducirla.

El Ultrafan, posiblemente el motor más convencional, una evolución de los actuales, con más eficiencia.

Una presentación acerca de la propulsión sostenible del futuro

Y un sistema para controlar la capa límite y lograr controlar su flujo

No dudéis en visitar la Feria virtual para tener más detalles acerca de la gestión del Clean Sky o de su dirección, organización…

Please follow and like us:
Categorías
General Noticias

Avions Mauboussin vuelve con dos aviones «verdes»

Avions Mauboussin era una compañía francesa de los años 30, que producía aviones ligeros y de carreras. La historia comienza en 1928, con el Peyret-Mauboussin PM X, un monoplaza ligero con el que se rompieron unos cuantos records. Durante los años 30 produce varios aviones ligeros, de ala baja, del estilo de los que se llevaban en aquella época. En el 36 se une a Fouga. En la Segunda Guerra Mundial casi desaparece, aunque hace algunos planeadores junto con Fouga. Y en los 50 desarrolla el famoso Fouga Magister. Se retiró en 1967, y ahora su nombre se vuelve a asociar a la aviación con los dos conceptos que podemos ver arriba.

El primero se trata de una STOL (de despegue y aterrizaje cortos) aeronave de pasajeros, de cuatro motores con una disposición poco habitual, en punta de plano, dos empujando y dos tirando. Los depósitos que podemos ver a mitad del plano son depósitos de hidrógeno.

La otra aeronave se trata de una aeronave biplaza, más convencional, con un motor de combustión y uno eléctrico. El motor eléctrico le permitiría despegar de forma más silenciosa (o eso dicen, a nuestro entender casi todo el ruido en despegue procederá de la hélice y de los flaps).

Y en ambos casos parece que apuestan por el uso de materias renovables, como el uso de la madera para realizar los materiales compuestos, o bioresinas. Al fin y al cabo, las fibras de la madera embebidas en la lignina se comportan como la fibra de carbono embebida en la resina. ¿O era al revés?

No hay muchos más datos disponibles, esperemos que avancen en el proyecto y vayan publicando más cosas. Como ya dijimos, en su día todo parecía que funcionaría con biocombustibles, ahora estrenamos la era del hidrógeno. Esperemos que avancen por el buen camino.

Fuente: Avions Mauboussin.

Please follow and like us:
Categorías
Blog Comercial Historia

Las alas de gran alargamiento de Marcel Hurel

Hemos mencionado los aviones Hurel Dubois dos veces en este blog. Así que ya va tocando dedicarles una entrada solo para ellos. La primera vez fue cuando presentamos el concepto de avión con ala de gran alargamiento con riostras de Boeing, y la segunda con el concepto de Airbus, que recurre a alas articuladas. Como hemos mencionado en otras ocasiones, un ala de gran alargamiento se comporta prácticamente como un ala de longitud infinita, minimizando los efectos de borde y por tanto aumentando la eficiencia del ala, reduciendo la necesidad de dispositivos de punta de ala para reducir los efectos del torbellino de punta de ala (resistencia inducida). Pero presenta varios problemas, uno es el que son demasiado esbeltas y hay que encontrar como sujetarlas al fuselaje sin que sea un sistema en exceso pesado, de ahí las riostras, o la articulación del segmento exterior, para reducir la transmisión de momentos al fuselaje. Otros problemas vienen derivados de que la gran flexibilidad del ala ocasiona no linealidades en las soluciones aerodinámicas (cuando se resuelven ciertas ecuaciones aerodinámicas aproximándolas con una serie de Fourier lo normal es quedarse solo con los primeros términos, despreciando los no lineales), así como fenómenos aeroelásticos.

Marcel Hurel es un diseñador y piloto francés. De hecho compitió en la más célebre copa de hidroaviación, como piloto de pruebas de CAMS voló su modelo 38 en el Trofeo Schneider, y se hizo famoso porque aprovechó en 1943 el primer vuelo de CAMS-Potez 161, un hidroavión examotor de 43 toneladas, para ponerlo lejos del alcance del ejército alemán, volando de la Francia ocupada a Bizerte, donde fue destruido en 1944.

Tras la guerra se asoció con Dubois, que era el socio capitalista, para diseñar el Hurel-Dubois 10. Este avión era un demostrador tecnológico para comprobar sus teorías acerca de las alas de gran alargamiento.

F-WFAN, rematriculado después F-BFAN

El alargamiento alar era de 32.5:1, más propio de un velero que de un avión a motor, ¡mucho menos de un avión de transporte! El HD-10 tenía un motor de 40HP, 12 metros de envergadura, y 480kg de MTOW, ¡prácticamente un ULM actual!. Con el motor de 75HP que se instaló después alcanzaba un crucero de 121mph. Las alas estaban construidas en aluminio-magnesio soldado, reforzadas con sendas riostras, mientras que el fuselaje era de tubo soldado revestido de tela.

Los resultados de los ensayos fueron positivos, logrando una buena sustentación con poca resistencia, y una capacidad de alabeo bastante sorprendete, a pesar de la gran envergadura que tiene. Entre 1948 y 1954 acumuló 218h 27 minutos de horas de vuelo, y actualmente se conserva en el Musée de l’Air et de l’Espace en Paris, en Le Bourget.

Monsieur Hurel tenía en mente desde el comienzo el hacer un avión de transporte, y logró que el gobiero francés apoyara su proyecto, con la construcción de dos prototipos prácticamente idénticos y que se diferenciaban tan solo en la motorización, y en que el segundo era 1.2m más largo, y la estructura reforzada: el HD-31 (F-WFKU, después F-BFKU) con los motores Wright Cyclone de 800HP y el HD-32 (F-WGVG, más tarde F-BGVG) con los Pratt and Whitney R1830 de 1200HP. El primero voló el 27 de enero de 1957, mientras que el segundo lo hizo el 29 de diciembre del mismo año.

HD31 en Le Bourget, minuto 2:55

La construcción de ambos era metálica, las alas tenian 46m de envergadura, y una relación de aspecto de 20.2:1, bastante menos que en el prototipo, pero aún así muy eficiente. En comparación, el DC-3 tenía una envergadura de 29 metros. El peso en vacío era de 11214kg, con un peso máximo al despegue de 19060kg. Con 6356kg de carga útil se le calculaba un alcance de 990km, a pesar de contar con la resistencia del tren fijo.

Del HD-32 se produciría un segundo ejemplar, el HD-321 (F-WHHA, más tarde F-BHHA), que se estrellaría el 31 de octubre del 56 en Bahía Guanabara, cerca de Río de Janeiro, en un vuelo de demostración, falleciendo una persona. El HD-32 se perdería el 10 de mayo de 1960 en un accidente en Villemoleix, saliéndose de pista. Este avión se puede ver, o se podía ver, aún allí.

El l’Institut Géographique National encargó una evolución de estos aparatos, el HD-34, con tren retráctil y morro acristalado. El primero de ellos (F-WHOO, más tarde F-BHOO) voló el 26 de febrero de 19570.

Sin embargo el avión producido en serie más exitoso que ha utilizado el concepto de Hurel es británico, el Shorts Skyvan, heredero del Miles-Hurel-Dubois HDM.105. Y visto lo visto, ¿quién dice que no puede ser el futuro de la aviación comercial?

Fuentes

Please follow and like us:
Categorías
Comercial Noticias

Airbus y Biomimética: puntas de ala abisagradas imitando a los Albatros

Cuando los ingenieros copiamos, digo imitamos, a las soluciones que ya existen en la naturaleza se le llama biomímesis o biobimética. Y es que haciendo una máxima aquello de si funciona, no lo toques, lo llevamos al si funciona, cópialo. Y si ya existe en la naturaleza y lleva tal vez miles de años funcionando, ¿por qué no adaptarlo a nuestras necesidades?

Y es lo que han hecho en Airbus con el albatros. Pero vamos por pasos…

Please follow and like us: