El autogiro como aeronave militar en España

Autogiros C.30 matrículas EA-SCA y SCB de la Aeronáutica Militar

Tras los ensayos en el Dédalo, la aeronáutica militar decidió adquirir dos aeronaves, que serían matriculadas como EA-SCA y EA-SCB. Las única referencia a servicio activo que hemos encontrado sobre ellas ha sido en la Revolución de Asturias, de 1934.

Aunque en sus líneas generales, el autogiro es conocido en España, patria de su inventor, creemos será interesante para el gran público técnico de esta Revista recordar sus principales características y, sobre todo, las modificaciones que ha experimentado en sus últimos tiempos.

Es indudable la trascendencia militar del autogiro, no tan sólo como arma de combate que reúne condiciones de agilidad superiores a las del aeroplano, sino, principalmente, como elemento auxiliar eficacísimo en la guerra.

En las ‘maniobras militares celebradas hace dos años en Inglaterra demostraron los autogiros su aptitud insuperable como medio de comunicación de las líneas del frente con sus respectivos Estados Mayores, con la circunstancia feliz de que no lograron alcanzarles ninguna de las bombas que les enviaron los aviones que volaban por encima de ellos, pues su vuelo cerca del suelo les comunica una invisibilidad notable.

Como en pleno combate las líneas usuales de comunicación quedan casi siempre cortadas, sólo el autogiro, elevándose y aterrizando sin rodaje y volando a pocos metros del suelo, permite establecer el enlace, que es vital en la lucha.

Es también interesante el autogiro como factor de evacuación de heridos; pero esta misión humanitaria se pospone ante su valor inmenso como elemento de información, de enlace y para el transporte de generales y oficiales de Estado Mayor.

Su velocidad mínima de vuelo, 25 kilómetros por hora respecto al viento, le permite, aunque éste no sea muy fuerte, pararse o incluso retroceder con respecto al suelo. El Sr. Cierva Codomíu, en el viaje que hizo por España el pasado año, efectuó unas demostraciones ante el alto personal de la Marina española en el aeródromo que ésta posee en San Javier, consistiendo una de las pruebas en entregar, sin aterrizar, una maleta a un soldado, éste la abría, y una vez vacía la devolvía al piloto. Más tarde, para poner de relieve la velocidad mínima de vuelo, un marinero vencía a un autogiro en- una carrera por el aeródromo. Esta propiedad es útilísima, pues el piloto puede observar, tomar fotografías o croquis y luego entregar éstos sin pérdida de tiempo en aterrizajes.

Otra prueba más reciente de la utilidad del autogiro ha sido la brillante campaña realizada por el Sr. Guitian pilotando un «C-30» de los adquiridos por la Marina de Guerra española. Efectuó aterrizajes en los pequeños prados de Asturias, en plena montaña, en condiciones, en fin, en que jamás un aeroplano pudiera soñar en aterrizar, y permitió, a un ilustre jefe militar, ponerse en contacto con su columna. El aparato no sufrió ni la menor avería en toda la campaña.

Memorial de Ingenieros del Ejército, Junio de 1935, número VI

Como curiosidad, el EA-SCA participó en un festival aéreo en Barcelona, aterrizando el 27 de enero de 1935 en la Plaza de Cataluña, y accidentándose al despegue.

La Aviación Militar había adquirido otros dos autogiros, matriculados como 41-1 y 41-2. El 41-2 sería rematriculado como Y1-3 y serviría en la escuadrilla de observación Y1, de la escuela de observadores.

Autogiro C.19 frente a la torre de señales de Cuatro Vientos, en algún año igual o posterior a 1947

La foto de arriba la recibimos por WhatsApp, y posteriormente la vimos en Facebook, Buscando el año en el que había sido hecha, encontramos la curiosa historia de esta aeronave. Es un C.19 construido por la fábrica de De la Cierva en Reino Unido. Pertenecía al Aeroclub de Andalucía, y había sido internado, como tantas otras aeronaves civiles, al comienzo de la contienda.

Originalmente EC-ATT, todas las aeronaves particulares o de aeroclubes que se militarizaban recibían una matrícula que comenzaba por 30, si era monomotor, o 32, si era bimotor, más un número consecutivo. Ésta recibió la matrícula 30-62. Tras la guerra y ser civilizado de nuevo, recibiría la matrícula EC-CAB, hasta 1946. En 1947 sería rematriculado como EC-AIM, y estaría volando muchos años. Con esa matrícula puede verse hoy día en el Museo del Aire de Cuatro Vientos.

Sin embargo no hemos logrado encontrar nada acerca de su uso en la contienda.

Lo que sí hemos podido encontrar es que, como en otros ejércitos, la incorporación como arma se estudió seriamente. Y en 1935 aparecía en la Revista General de Marina (tomo nº 116, 1935) el siguiente estudio para utilizarlo como arma anti submarina, basado en analizar experiencias de la Gran Guerra.

Consideraciones sobre las posibilidades actuales del submarino
ACCION ANTISUBMARINA

Medios de localización.
Los medios de localización del submarino comprenden:
— la localización por la vista.
— la localización por redes.
— la localización por el oído.
— la localización por sistemas electromagnéticos.
[…]
El avión es un medio más eficaz para la localización del submarino, por su mayor radio de visibilidad y porque puede descubrir a aquél aunque tenga el periscopio debajo del agua, con tal que no haya descendido por debajo de una profundidad dependiente de:
— el color del casco.
— la luminosidad del cielo.
— la coloración del mismo.
— el estado de la mar.
el color del fondo.
— el enturbiamiento de las aguas y
— las posiciones relativas del Sol, el avión y el submarino.
El cono de visibilidad de un avión adopta la forma indicada en la figura adjunta (i). A medida que la profundidad del submarino va aumentando, el cono de visibilidad se cierra, dificultándose la localización; cuando el submarino se encuentra a profundidades comprendidas entre ios.20 y 30 metros es prácticamente invisible aún en condiciones de luz y mar favorables al avión.[…]

El avión encuentra dificultades para la localización del submarino en su propia velocidad. Sabido es que la velocidad mínima de unavión, necesaria para su sustentación, es siempre de un orden elevado, y, por consiguiente, si el submarino presenta un cono de visibilidad reducido, lo que sucede para profundidades superiores a 20 metros, aunque el avión tenga la suerte de atravesarlo, el tiempo quetarda en ello es muy pequeño, y el submarino, que nunca se destacará gran cosa, podrá pasársele inadvertido. En este orden de ideas, el autogiro, que puede regular su velocidad hasta quedarse práctica mente parado, es muy superior al avión; el autogiro puede escu4riñar la superficie del mar con mucho más detenimiento y, por lo tanto, mucho más eficazmente. El notable invento del ingeniero Sr. La Cierva presenta las mejores cualidades como elemento aéreo de acción antisubmarina. Más tarde volveremos a insistir sobre esta cuestión.

Revista General de Marina, tomo número 116, Enero-Junio 1935

Agradeceríamos que nos hicierais llegar cualquier contribución acerca de estas aeronaves durante la Guerra Civil.

Fuentes

Memorial de Ingenieros del Ejército, junio de 1935, número VI

Fotos de los autogiros de la Aeronáutica Naval de Hobby Modelismo.

Revista de Aeronáutica y Astronáutica de 1974 [pdf]

Francisco Andreu en Aviation Corner, y [2]

Revista General de Marina, tomo número 116, Enero-Junio 1935

Empleo del autogiro por la artillería de los Estados Unidos y su éxito como aeronave-correo.

Si los españoles, los italianos y los británicos probaron el autogiro embarcado, y se realizaron ensayos para utilizarlo como ambulancia, o se planteó como solución de movilidad aérea urbana, ¿Cómo no iban a probarlo los estadounidenses para dirección de tiro artillero?

Autogiro Kellet KD-1, basado en el C.30

Actualmente se experimentan en el Ejército americano autogiros de un tipo especial que están destinados a ser empleados por la artillería. Estos autogiros tienen las siguientes características: Peso total, 900 kilogramos; potencia del motor, 225 CV.; velocidad máxima, 200 kilómetros por hora; velocidad en crucero, 165 kilómetros; aprovisionamiento de carburante, 586 kilogramos; velocidad ascensional, 300 metros por minuto.

El aprovisionamiento es suficiente para un vuelo de tres horas y media a la velocidad en crucero; para elevarse y aterrizar necesita una pista de 30metros.

Merced a las características especiales del autogiro, que puede practicar vuelos a poca altura y a marcha lenta, es posible proceder rápidamente al reconocimiento del terreno y recoger informes relativos a los emplazamientos de la artillería contraria, y de los centros de observación, así como de la distribución de los depósitos de municiones y centros de enlace. Todos los informes recogidos pueden transmitirse rápidamente al Mando, que podrá sacar provecho de ellos en beneficio de su artillería.

En lo que a medios de enlace se refiere el autogiro puede emplearse con éxito, pues es apto para aterrizar en casi todos los terrenos y transportar observadores de un puesto de observación a otro. Gracias a estas .propiedades el enlace infantería-artillería se facilita considerablemente.

Desde el punto de vista de la observación el autogiro es susceptible de procurar a los artilleros la posibilidad de orientarse rápidamente respecto a las tropas de Infantería más avanzadas, a las que apoya, y de localizar los nidos de ametralladoras y los centros de resistencia enemigos.

La comprobación del tiro se facilita considerablemente con el emipleo del autogiro, realizándose mejor que con un avión ordinario; otro tanto puede decirse respecto a la observación de los tiros de destrucción. En ambos cometidos el autogiro da mayor rendimiento que cualquier otro aeróstato por su mayor movilidad, menor riesgo de avería, techo más elevado y posibilidad de trabajo en condiciones atmosféricas desfavorables.

El autogiro permite también establecer líneas telefónicas en regiones poco accesibles; para este cometido se adapta al aparato una bobina que desarrolla el hilo mientras el autogiro vuela a poca altura.

Con el autogiro se puede facilitar considerablemente los aprovisionamientos de todas clases y el transporte de heridos.

Memorial de Ingenieros del Ejército, diciembre 1935 número XII

La empresa de Kellett se había establecido a finales de los años 20. A comienzos de los 30 compró la licencia de fabricación a De la Cierva y comenzó a fabricar sus autogiros, basados en el C.19 y el C.30, el primero que tenía mando directo. Hasta entonces los autogiros habían estado dotados de unas alas embrionarias con superficies de control. En un C.19 modificado se ensayó lo que se generelizaría posteriormente como sistema de control de las aeronaves de ala rotatoria: el sistema de mando directo, esto es, el control de la actitud de la aeronave mediante la inclinación del rotor y el cambio de paso de sus palas. Además el C.19 ya tenía la capacidad de despegue vertical, embragando el rotor al motor, que le dotaba de una velocidad de rotación tal que le permitiera el despegue.

El autogiro ensayado por el US Army estaba basado en el KD-1, con mando directo, de ahí la D en la designación, y posibilidad de despegue «de salto». La denominación militar sería YG-1.

Además de estas pruebas, se realizaron otras en 1939, en las que se enfrentarían los autogiros de Kellett contra el Platt-Le Page XR-1 y una Stinson lOS /YO- 54. El General Danford, buscando unos ojos para la artillería, quería enfrentar almenos 3 aparatos que fueran comerciales, baratos y ligeros.

El primero en entrar en competición fue el Stinson. El Platt-Le Page, aunque ya volaba, se encontraba en unas fases de desarrollo muy tempranas. Y el autogiro empezaría a volar poco después que la Stinson. La oposición del General Arnold no ayudó mucho a la creación de la especialidad de observadores para la artillería, ni facilitó los ensayos. Al final triunfarían los grass hopper, que verían servicio incluso embarcados. ¡Con lo fácil que era despegar desde una embarcanción con un autogiro en vez de con el sistema Brodie! ¡Cuánto mejor hubieran despegado desde las lanchas de desembarco los autogiros que los grass hopper!

Las pruebas fueron suficientemente satisfactorias como para que Kellett se embarcara en el diseño de su autogiro más avanzado, el XO-60/YO-60. Se ensayarían en 1942, pero nunca llegarían a entrar en combate.

Kellett YO-60 en vuelo
Kellett XO-60, propiedad del Smithsonian. La foto también es de su propiedad, y se reproduce sin ánimo de lucro

Si bien Kellett no lograría que sus aeronaves fueran adoptadas por el US Army, si logró que fueran las primeras de ala rotatoria en repartir correo

Correo aéreo en autogiro

Fuentes

Video: Royal Navy prueba un autogiro embarcado (1942)

Captura de pantalla del autogiro a punto de despegar

Si la Armada española había probado en el Dédalo en 1934 el C.30, y la marina italiana lo había hecho en 1935, la Royal Navy lo haría en 1942. ¡Y por primera vez podemos verlo en vídeo! Pues de las otras pruebas solo hemos encontrado fotografías.

«Reggie» Brie, el mismo piloto que aterrizó en el crucero italiano, realizó estos ensayos para la Royal Navy.

Un Pitcairn PA-39 apontaba en el Empire Mersey, especialmente modificado con una cubierta de vuelo, en el verano de 1942, ¡casi diez años después que las primeras pruebas españolas! en la bahía de Newport News, Virginia. Los ensayos se realizaron en Estados Unidos, con la idea de dotar a los barcos mercantes de cierta capacidad antisubmarinos.

La imposibilidad de realizar vuelos a punto fijo con el autogiro dificultaban la toma en la cubierta de vuelo, segñun Brie. Allí en estados unidos conoció los trabajos de Sikorsky en su VS-300, y quedó impresionado por su maniobrabilidad, y la versatilidad que le dotaba el poder volar en todas las direcciones, así como el poder volar en estacionario, lo que le llevó a pensar que se desempeñaría mejor como arma embarcada.

Desde el 42 al 45 permaneció en Estados Unidos, donde se involucró activamente en sembrar tanto en la US Navy como a la Royal Navy la idea de la idoneidad del helicóptero como aeronave para lucha antisubmarina.

Aunque iban a ser mandados a Francia en 1939, como aeronaves de enlace, finalmente esa orden fue anulada. Dieron buen servicio ayudando a calibrar los radares de defensa de las islas británicas.

La incorporación de los autogiros a la flota británica se empezó a discutir en fecha tan temprana como 1935:

Autogiros para la Marina. Según el Daily Tele graph, el Almirantazgo ha decidido adquirir para la aviación naval una escuadrilla de autogiros.
[…]
En una conferencia leída por el Sr. Leslie Champness ante la North-East Coast Association of Engineers and Shipbuilders trató acerca de los proyectos de destructores, […] También trató de la factibilidad de dotar a estos buques de autogiros, que podrían despegar sin necesidad de catapultas y, finalmente, dió a conocer un proyecto de motor Diesel apropiado para destructores que con un pequeño sacrificio en la velocidad se lograría un con siderable aumento en el radio de acción

Revista General de Marina, 1935, Tomo 116

Fuentes

Cierva Autogiros: The Development of Rotary-Wing Flight. Washington, D. C.: Smithsonian Institution Press, 1988; Shrewsbury, England: Airlife Publishing Ltd. 1988 pp. 227-8, Brooks, Peter W.

Reginald Brie – Pioneer of Autogyros and Helicopters, textos de R. A. C. Brie compilados por David Gibbings. Royal Aeronautic Society

Revista General de Marina, 1935, Tomo 116

Primera estación solar en UK para cargar el CH750 eléctrico de NUNCATS

Estación solar de carga para el jeep volador eléctrico de NUNCATS

La primera estación de carga solar para aviones eléctricos en Reino Unido ha sido instalada en el aeródromo de Old Buckenham. Se trata de un aparcamiento para coches techado, modificado para albergar bajo él la Zenair eléctrica de NUNCATS (No Unnecessary Novelty, Community Air Transport Systems) y poder recargarla. El tejado esta recubierto por 33 paneles Q CELLS’ Q.PEAK DUO L-G8 de 425W.

El jeep eléctrico del cielo lo presentamos en octubre. De momento tiene una autonomía bastante pobre, de apenas media hora. El objetivo de NUNCATS es dotar de una aeronave de fácil mantenimiento y que no dependa del suministro de combustibles a áreas remotas y aisladas, en las que un enlace entre dos pueblos puede hacerse volando en apenas minutos, y se necesitan varias horas por carretera. O bien para hacer vuelos entre islas cercanas.

Fuente: nota de prensa

De nuestra entrada anterior:

Tim Bridge, fundador de Nuncats, dice que en el mundo más de dos millones de personas viven en áreas rurales incomunicadas y por tanto con mal acceso, o sin él, a hospitales y otros servicios de primera necesidad. Cree que un avión que puede aterrizar, virtualmente, en casi cualquier sitio y que no dependa del suministro de combustible, pudiéndose cargar en los distintos puntos que enlaza, podría ser una línea de vida para estas comunidades, permitiendo su acceso a todos estos servicios.

Esperan lograr con el motor eléctrico y las baterías las mismas prestaciones que con el motor estándar de 100hp, aunque de momento su autonomía es de tan solo media hora, lo que lo haría útil solo para enlaces cortos, y dependiente de una red de carga extensa.

Nuncats también espera que el sector de la aviación ligera, pilotos, escuelas… se interesen en un futuro por su proyecto, para convertir las aeronaves ligeras existentes a eléctricas.

Chris Heintz desarrolló su exitoso CH-701 jeep del cielo, avión de despegue y aterrizaje corto o STOL, como avión de fabricación amateur. Desde su creación Zenith ha apoyado que se motorice con variedad de plantas de potencia, desde el Continental O-100 al, ahora, casi ubicuo Rotax 912. De hecho Heintz fue de los primeros, si no el primero, en instalar un 912 en norteamética. Y por eso Zenair se ha involucrado en el proyecto, de hecho el propio presidente Sebastien Heintz ha mostrado su apoyo a este proyecto británico.

Turbo Wing® o sustituir los flaps por rotores oscilantes

Turbo Wing instalado en un aeromodelo para probar el concepto

No es la primera vez que presentamos en este blog aeronaves que recurren a motores extra para reducir la velocidad de despegue y aumentar las características STOL gracias a que estos motores soplan la capa límite, como el Catalina cuatrimotor o el An-2 con nueve motores, ni los que juegan con la capa límite y aumentar la circulación entorno al ala, aunque sí es posiblemente el primero que reemlaza los flaps con unos rotores basculantes.

Con 30 años de experiencia a sus espaldas en la NASA, Lockheed Martin y Martin Marietta, Frank S. Malvestuto Jr. intentó revolucionar la aeronáutica con un nuevo sistema hipersustentador que prometía reducir el consumo y mejorar las características STOL

Cómo funciona

Este concepto fue patentado en los años 70 por su inventor, Frank S. Malvestuto Jr., y llevado a la práctica primero en aeromodelos, para probar el concepto, y posteriormente en tres prototipos.

El invento consiste en un nuevo tipo de hipersustentador que debería reemplazar los flaps.

Ventiladores instalados en el ala, reemplazando a los flaps tradicionales

Si recordamos por qué vuelan los aviones, y qué son los hipersustentadores, entenderemos fácilmente cómo funciona el Turbo-Wing.

Esquema del funcionamiento del Turbo-Wing
Esquema del funcionamiento del Turbo-Wing

Al estar situado en el borde de salida y tomar aire del extradós y soplarlo hacia abajo, logra varios efectos. Por un lado fuerza a que la capa límite del extradós no se desprenda, permitiendo grandes ángulos de ataque y velocidades de pérdida bajas. Por otro lado, fuerza la circulación del aire entorno al perfil alar (acelera el aire en la parte superior), aumentando la sustentación. Además de eso, cada rotor está proporcionando sustentación, lo que descarga al ala, y le permite volar con un ángulo de ataque menor, reduciendo la resistencia aerodinámica.

Comparación de un avión normal vs el mismo modelo retrofitado con dos rotores

Primer prototipo

Después de ensayarlo en tunel de viento y aeromodelo, llegó el momento de probarlo en un avión real. El primero fue el Rotor-Wing 1, un avión experimental construido en los 80.

Rotor Wing 1

El proyecto comenzó en Brown Field, en San Diego. Recibió la matrícula N25RW. Se diseñó y se construyó desde cero, para probar el concepto de instalación de un rotor basculante en el borde de salida del ala. El avión voló al menos 2 veces en 1984, antes de comenzar la construcción de un segundo prototipo, el Rotor-Wing 2, que utilizaba el ala de una Cessna 150, así como un plano canard y un empenaje distinto. Sin embargo este segundo prototipo no llegó a ser terminado, por lo que nunca llegó a abandonar el suelo ni recibió matrícula alguna.

Rotor Wing según la patente

Cessna 207

En lugar de terminar el segundo prototipo se procedió a modificar un avión ya existente: una Cessna 207 matrícula N1581U.

Cessna 207 con los rotores instalados
Detalle de la instalación del rotor en el ala de la Cessna 207

Este avión, así modificado, realizó cientos de vuelos, con unas prestaciones espectaculares

ParámetrosAvión
no modificado
Turbo Wing
Peso al despegue (libras)35703570
Potencia al eje de los rotores (HP)15
Velocidad de despegue (mph)7535
Tasa de ascenso (fpm)8101600
Distancia de despegue, obstáculo de 50ft (ft)1’900400
Velocidad de aproximación (mph)8035
Distancia de aterrizaje, obstáculo de 50ft (ft)1’500300
Resultados de los ensayos realizados con la Cessna 207
Resultados de los ensayos realizados con la Cessna 207

Cessna Skymaster

Tras el éxito con la Cessna 207, los ensayos continuaron en el aeropuerto de Ramona. Allí se modificó una Cessna 337 Skymaster, matrícula N2225X, convirtiéndose así en posiblemente la única pull-push examotor.

Esquema de instalación de los cuatro rotores en el borde de salida
Skymaster convertida en hexamotor

Con los cuatro rotores instalados en el lugar de los flaps y movidos por 4 motores de 25HP, una vez más, el avión tenía unas características STOL impresionantes. Y, como los modelos anteriores, resultaba casi imposible de meter en pérdida.

Vista frontal de la Skymaster modificada
Vista trasera de la Skymaster modificada
ParámetrosAvión
no modificado
Turbo wing
Peso máximo al despegue – MTOW (libras)46305300
Potencia por rotor (HP)25
Velocidad de despegue (mph)7635
Tasa de ascenso (fpm)11002200
Distancia de despegue, obstáculo de 50ft (ft)1675330
Velocidad mínima de vuelo (mph)8530
Alcance, a velocidad máxima de crucero (millas)1100 miles1800 miles
Velocidad de aterrizaje (mph)7835
Distancia de aterrizaje, obstáculo de 50ft (ft)1’650300
Resultados del ensayo con la Skymaster

Aplicaciones propuestas: retrofits y aviones nuevos

La propuesta del inventor era reemplazar los flaps por este sistema, tanto en diseños nuevos como en aeronaves antiguas a las que se les podría dotar de una nueva vida como aeronaves STOL.

Propuesta de anfibio STOL con sistema Turbo Wing
Concepto de super transporte empleando el sistema de rotores Turbo Wing

¡Incluso llegó a proponer una modificación del C-130 Hércules!

Maqueta de un Hércules modificadp
Estimación de prestaciones del Hércules modificado contra el la versión sin modificar

Las mejoras generales aplicadas a cualquier aeronave que esperaba el inventor obtener son:

  • Reducción hasta de un 50% de la velocidad mínima
  • Reducción hasta de un 75% de las distancias de despegue y aterrizaje
  • Aumento hasta de un 50% de la tasa de ascenso
  • Alcance aumentado de un 50 a un 70%
  • Consumo reducido entre un 25 y un 50%, ¡a pesar de llevar motores extra!
  • Reducción drástica de la velocidad de entrada en pérdida
  • Ala casi imposible de meter en pérdida, y con una pérdida muy benévola
  • Mejor comportamiento ante viento cruzado, rachas y turbulencia

Obviamente no todo son ventajas, puesto que en caso de fallo de uno de los motores se produciría un evento de sustentación asimétrica, o en caso de perder el sistema habría que realizar un aterrizaje a alta velocidad.

El inventor

Frank S. Malvestuto Jr.

Frank S. Malvestuto Jr. comenzó su carrera en 1943, en el Centro de investigación de Langley, ahora de la NASA. Sus primeras investigaciones fueron sobre el comportamiento de las aeronaves durante las barrenas, cálculo de sus momentos de inercia, y posteriormente pasó a la aerodinámica de las aeronaves supersónicas, comportamiento de las alas rectas de diseño subsónico en vuelo supersónico.

En 1956 comenzó a trabajar en Edwards, la base aérea de la Fuerza Aérea, en California, aplicando sus conocimientos teóricos a aviones experimentales construidos a escala real, en lugar de escala de túnel de viento o aeromodelos.

En 1959 se incorporó a la división de Ciencias del Vuelo de Lockheed, como jefe de división. Era el responsable de los desarrollos teóricos y cálculo de actuaciones de los aviones y vehículos espaciales.

En 1964 se unió a Martin Marietta como jefe de Tecnologías de Vuelo, y dirigió el departamento de aerodinámica, mecánica de vuelo y sistemas de control térmico. También inició los diseños conceptuales de Lockheed y Martin Marietta para los conocidos aviones experimentales X-24A y X-24B.

En 1972 fundó su propia compañía, y dedicó todos sus esfuerzos a desarrollar y ensayar la tecnología del Turbo Wing®, en la que reunió 30 años de experiencia en investigación y desarrollo, además de su experiencia en desarrollo de prototipos.

Fuentes