Pilotos de sillón

Así es como hoy día muchos llaman de forma un tanto despectiva a los controladores de los UAVs. Pero éste no es un titular de hoy en día, sino ¡de 1947!

El artículo apareció en el número de febrero de 1947 de Modern Mechanix:

PILOTOS DE SILLÓN (Modern Mechanix, febrero de 1947)

Vuelan aviones con cajas que emiten pitidos. No son realmente pilotos de sillón, porque nunca vuelan desde sillones; es más probable que estén en jeeps o en aviones nodriza. Pero el nombre encaja, de alguna manera, porque estos muchachos nunca están cerca de los aviones que están volando. Son los pilotos por radio de las Fuerzas Aéreas del Ejército (USAAF(1)). Moviendo palancas en pequeñas cajas de cinco libras, controlan enormes, gigantes cuatrimotores que pueden estar a 50 millas de distancia detrás de un banco de nubes.

En su forma actual, el vuelo por radiocontrol es así: la pequeña caja del piloto tiene una pequeña «palanca» y un acelerador, muchos interruptores y un visor de televisión. Está conectado a un transmisor que envía las instrucciones del piloto al avión controlado de forma remota; enviando 10 señales moduladas diferentes, puede controlar 10 funciones de vuelo diferentes. En el avión, además del receptor y el aparato para convertir las instrucciones de la señal de radio en acción, hay un transmisor de televisión que puede mostrar el panel de instrumentos o, a elección del piloto remoto, mirar a través del parabrisas.

Debido a que emite sonidos parecidos a pitidos, la caja de control se llama “caja de pitidos”. El avión controlado se conoce como «bebé», probablemente porque generalmente hay un avión nodriza flotando cerca de él.

Eso es todo, excepto que el pilotaje remoto no es fácil. En el pequeño mando en la caja de control no se tiene la sensación que da un joystick normal, y «volar por las sensaciones en el culo» está naturalmente fuera de la ecuación. Además, debido a que el bebé realmente está siendo pilotado por su propio piloto automático, que recibe las «correcciones» de la caja de pitidos, hay un retraso en su respuesta (2). Esto genera una tendencia al sotre-control que hace que comience un movimiento de sube y baja cada vez mayor(3). Así que los pilotos remotos aprenden primero a manejarse en los PQ-14, pequeños aviones-blancos aéreo, que no solo son más fáciles de manejar sino también un poco más prescindibles que los B-17 Flying Fortresses. Después de familiarizarse con la caja de pitidos, toman el control de los aviones más grandes. Eventualmente, son capaces de despegar, maniobrar y aterrizar B-17 no tripulados.

Si hubiera otra guerra, no hay duda de lo que estos muchachos estarán haciendo. En tiempos de paz, los pilotos de salón enviarán aviones sin piloto a los huracanes para obtener nuevos datos meteorológicos, probarán nuevos aviones supersónicos y pilotarán aviones blanco para practicar con armas antiaéreas.

Notas

(1) Aeronautical Division, Signal Corps (1 agosto 1907 – 18 julio 1914); Aviation Section, Signal Corps (18 julio 1914 – 20 mayo 1918); Division of Military Aeronautics (20 mayo 1918 – 24 mayo 1918); U.S. Army Air Service (24 mayo 1918 – 2 julio 1926); U.S. Army Air Corps (2 julio 1926 – 20 junio 1941); U.S. Army Air Forces (20 junio 1941 – 18 septiembre 1947)

(2) Es un problema bien conocido, y cuanto más lejos está el avión controlado de forma remota, más retraso en recibir las órdenes, y con más antelación hay que preveer las acciones del avión.

(3) Oscilaciones inducidas por el piloto, o PIO.

Boeing valida el software para el respostaje de aviones tripulados desde UAVs

La apuesta de Boeing y de la US Navy para el repostaje en vuelo de las aeronaves embarcadas es el MQ-25 Stingray, un avión cisterna no tripulado que, hasta ahora, era controlado por pilotos de UAV desde el portaaviones. Esto dificultaba los repostajes a larga distancia del buque, por el retraso en la llegada de los comandos. Por eso Boeing ha desarrollado y validado este software, que permite al piloto del avión repostado tomar los controles del Stingray e iniciar la secuencia de repostaje por sí mismo, sin depender del piloto de UAV en el barco.

La validación la ha realizado en un vuelo simulado, integrando el software de control dentro del simulador, en el que un piloto humano volaba el F/A-18 mientras que controlaba el MQ-25.

Sería interesante saber más acerca de cómo de autónomo es el sistema y cuánta carga de trabajo adicional introduce al piloto, pues no podemos olvidar que, en 2022 en Europa, el MRTT fue el primer avión cisterna certificado para repostajes autónomos, y que incluso ha realizado repostajes autónomos a aviones no tripulados. Boeing lleva desde 2009 trabajando en repostaje autónomo de drones junto con el AFRL.

Nota de prensa

Boeing ha avanzado en su tecnología de trabajo en equipo de aeronaves tripuladas-no tripuladas (MUM-T) utilizando un F/A-18 Super Hornet digital y un MQ-25 Stingray. Las pruebas muestran que el software está maduro para su uso futuro en la Marina de los EE. UU. y tiene potencial para implementar la capacidad MUM-T en los Super Hornets F/A-18 Block II y III.

En un laboratorio de simulación, un equipo liderado por Boeing demostró virtualmente a un piloto de F/A-18 al mando de un MQ-25 no tripulado para liberar un embudo de reabastecimiento de combustible y reabastecer de combustible al Super Hornet, utilizando enlaces de comunicaciones existentes en ambas plataformas.

El nuevo software es el resultado de los ensayos que Boeing ha realizado anteriormente. Además del software actualizado, los equipos de prueba utilizaron hardware y enlaces de datos ya instalados en ambas plataformas para ejecutar el software finalizado, lo que demuestra aún más la preparación de Boeing para ofrecer esta capacidad a la Armada.

“El MQ-25 está diseñado para recibir normalmente órdenes de pilotos de vehículos aéreos en un portaaviones. Este software agregará una segunda opción, que permitirá a los pilotos iniciar comandos directamente desde su cabina”, dijo Alex Ewing, líder de desarrollo de nuevos productos F/A-18.

El software creado por Boeing reducirá significativamente el tiempo que tarda un F/A-18 en comunicarse con un MQ-25, dando a los pilotos una mayor flexibilidad para repostar combustible desde distancias más largas.

«El objetivo de las demostraciones era hacer que el reabastecimiento de combustible del MUM-T fuera lo más real posible», dijo Juan Cajigas, director del programa Advanced MQ-25. “El reabastecimiento de combustible en vuelo es como un ballet cuando dos aviones se juntan. Poder dirigir las actividades a través de un único piloto, de forma segura y eficiente, es un gran paso adelante en la tecnología de reabastecimiento aéreo”.

Yak-52 ucraniano cazado cazando drones rusos

El Yak-52 es un avión de entrenamiento biplaza, que algunos comparan con el T-6. Aunque nada más lejos de la realidad, el Texan es de los años 30 y el Yak-52 voló por primera vez en el 76.

El 52 tampoco tiene ametralladoras en el morro, como sí tenía el Texan. Lo que hace pensar que el derribo del drone ruso, parece ser que un Orlan 10, se ha producido disparando desde el asiento trasero.

Tras ser derribado se ha activado el paracaídas de recuperación balístico del drone de reconocimiento.

Se observa en el vídeo que para poder orbitar entorno al drone derribado el Yak vuela con los flaps desplegados.

Dice Clash Report que el Yak lleva camuflaje y escarapela del ejército del aire ucraniano. Pero la captura de pantalla del vídeo más parece de un avión pintado para acrobacia. ¿Estarán usando aviones lentos, de baja tecnología, para contrarrestar los ataques de drones de baja tecnología?¿Cómo de seguro es el espacio aéreo ucraniano para poder operar este tipo de aeronaves tan vulnerables a aviones o helicópteros modernos?

Actualizamos con nuevos vídeos. Y, atención, porque en el vídeo que se muestra la imagen desde dentro de cabina del Yak, el ala es azul y amarilla, a rallas, como en el vídeo que poníamos sobre estas líneas, mientras que el vídeo grabado desde el drone ruso es de un Yak de camuflaje, pero distinto al que publicaba Clash Report (también sobre estas líneas), lo que podría indicar que ha habido más de uno de estos enfrentamientos.

Fuente del vídeo, vía Militarnya

Llegan a Eglin los primeros F-16 para su conversión en UAV autónomos

Los F-16 llegan para ser modificados para pruebas autónomas

En 2013 os anunciamos el primer vuelo de un F-16 convertido en avión no tripulado, y que se le entregaría a la USAF a partir de 2015 como blanco aéreo QF-16. En 2016 supimos que haían estado «jugando» con estos aviones: Vuelos en formación con aeronaves tripuladas usando el QF-16 como punto fiel, aunque el F-16 no tripulado iba un piloto de seguridad, por si las moscas.

El QF-16 podía realizar despegues y aterrizajes autónomos, así como varias maniobras de combate porgramadas y vuelos supersónicos. Este QF-16 ofreceía a los pilotos un blanco aéreo realista, y con una capacidad de maniobra similar a la de aviones de caza reales en servicio en otras fuerzas aéreas.

QF-16

En 2015 la USAF anunció que tenía intención de convertir los F-16 de 4GEN en puntos fieles de los de 5GEN.

Teniendo en cuenta la alta disponibilidad de aeronaves de generaciones 4, 4+, 4++… y la escasa producción de cazas de 5ª generación, junto con la crónica reducción de presupuestos para nuevos proyectos de defensa, tal vez el convertir los aparatos más antiguos en capaces aviones no tripulados al mando de un líder humano en un avión superior sea una buena solución intermedia hasta la llegada de los aviones de 6ª generación, que es lo que parece que el ex-secretario de la USAF Michael W. Wynne llamó Manada de Lobos. Y que últimamente se menciona más como puntos-fieles y como enjambres.

NF-16

El Laboratorio de investigaciones de la Fuerza Aérea, Air Force Research Laboratory (AFRL), ha estado avanzando en algoritmos para lograr cazas no pilotados autónomos. Estos algoritmos podrían estar alojados en una o más LRUs o en un «cerebro» que podría ser transferido entre aviones con un mínimo esfuerzo. Desde que dijimos que se esperaba lanzar el programa en 2018 y tener demostradores volando en 2022, el laboratorio y la USAF han realizado numerosas pruebas, como las del NF-16 VISTA, en la que se integró un «cerebro» con IA, para lograr que el avión volara de forma autónoma.

En menos de tres años, los algoritmos de inteligencia artificial (IA) desarrollados bajo el programa Air Combat Evolution (ACE) de DARPA pasaron de controlar F-16 simulados que vuelan combates aéreos en pantallas de computador, incluso ganaron a un humano, y a a controlar un F-16 real en vuelo.

Además, USA ya anunció la creación de enjambres de drones de combate, de todos los tamaños…

El día que en un combate simulado IA-humano, ganó la IA

Y ahora llega otro programa, que sin duda bebe de todo lo anterior, en el que se convertirán más F-16 a aeronaves no tripuladas y se realizarán pruebas de la autonomía que le da la IA en vuelo, aunque -al menos de momento- con pilotos de seguridad humanos a bordo, como explica la Nota de prensa:

VENOM-AFT está diseñado y financiado para acelerar las pruebas de software de autonomía en aeronaves tripuladas y no tripuladas. VENOM-AFT complementa el terreno de pruebas de autonomía y experimentación en inteligencia artificial en la Base de Eglin e informa al programa de Aeronaves de Combate Colaborativas y a otros desarrolladores de autonomía.

El siguiente paso para el programa VENOM es modificar las aeronaves F-16 como bancos de ensayo para evaluar rápidamente las capacidades autónomas.

El programa VENOM marca un capítulo crucial en el avance de las capacidades de combate aéreo. Este programa transformador tiene el potencial de redefinir los paradigmas del combate aéreo al fomentar nuevas funciones autónomas para las plataformas actuales y futuras tripuladas y no tripuladas. Esperamos con ansias la culminación de años de ingeniería y colaboración, ya que VENOM marca un paso medido hacia una nueva era de la aviación.

Mayor Ross Elder, líder de pruebas de desarrollo de VENOM

Tener pilotos de pruebas de desarrollo y de pruebas operativas trabajando y volando desde la misma ubicación permite la colaboración diaria y reduce la compartimentación del conocimiento y las lecciones aprendidas

Teniente Coronel Jeremy Castor, líder de pruebas operativas de VENOM

Durante estas pruebas, los pilotos estarán en la cabina para monitorizar la autonomía y garantizar que se cumplan los objetivos de prueba de sistemas de vuelo y misión.

Es importante comprender el aspecto ‘humano en el bucle’ de este tipo de pruebas, lo que significa que un piloto estará involucrado en la autonomía en tiempo real y mantendrá la capacidad de iniciar y detener algoritmos específicos. Nunca habrá un momento en el que la aeronave VENOM vuele sin supervisión humana. En cuanto a VENOM-AFT, el desarrollo rápido de autonomía táctica se centra en avanzar tan rápido como sea posible, de manera segura, para garantizar que tengamos al CCA volando lo antes posible

Teniente Coronel Joe Gagnon, comandante del 85º Escuadrón de Pruebas de Evaluación

Los operadores proporcionarán retroalimentación durante la modelización, simulación y después del vuelo a los desarrolladores de autonomía para mejorar el rendimiento con el tiempo y garantizar que la autonomía tome decisiones apropiadas antes y durante el vuelo.

El objetivo del programa VENOM es permitir a la Fuerza Aérea iterar y expandir rápidamente los de conocimientos para posibles soluciones de autonomía y carga útil.

[Podcast] Análisis: Portugal y España se han interesado por porta-UAVs, con Carlos González

Recientemente hemos hablado del interés que están despertando los buques porta-aeronaves no tripuladas. Analizamos con el propio Carlos el caso del Anadolu. Y esta vez, también con Carlos, analizamos el buque portugués, del astillero Damen, así como la noticia publicada sobre el interés de la Armada española en un portaaeronaves capaz de operar con aviones no tripulados de unos 600kg.

El podcast se puede encontrar en Amazon Music, Apple Podcast, Google Podcast, Ivoox, Spotify

pd: Si la intro y la despedida os son familiares, que no os sorprenda. En un ejercicio de nostalgia podcasteril he hablado con Javier Lago para pedirle permiso y utlizar la introducción que hizo para el que, si no recuerdo mal, fue el primer podcast español sobre aviación: Remove Before Flight RBF podcast