Impact 700: un MALE israelí con ADN gallego

Impact 700

Colyaer fue fundada en 1995 y, desde 2018, opera bajo el nombre de Fiber Laminates en Portonovo, Galicia. La empresa se especializa en la fabricación de aeronaves, incluyendo aviones no tripulados, y ha aparecido de vez en cuando en el blog desde 2008.

Tiene tres modelos tripulados, por orden de obtención de sus certificados de aeronavegabilidad son el Martín —terrestre—, el Gannet —hidrocanoa—, y el Freedom —anfibio—.

Ya en 2007 trabajaron con Aerocross Systems para convertir el Martin en el avión no tripulado Echo Hawk. En 2017 supimos que trabajaban con UVS Intelligence System para crear un UAV anfibio basado en el Freedom. Y, recientemente, hemos conocido que la israelí Meteor Aerospace está construyendo su UAV MALE Impact 700 con la célula de un Martín.

Seguir leyendo

[Podcast] Portadrones chinos e iraníes

El seis de febrero de 2025 Irán nos sorprendía con la presentación de su nuevo buque porta-drones, basado en un portacontenedores. De haberlo hecho un poco antes lo habríamos metido en nuestro análisis de los UAVs SiRTAP, Mojave y TB3 embarcados. Pero como llegaron tarde para ese episodio del podcast y hoy es el día de la radio, hemos decidido regalaros un episodio extra hablando de los porta-drones chinos e iraníes, así como de las aeronaves no tripuladas que pueden llevar, y un mini-análisis de para qué pueden utilizarlos. ¿Nos acompañáis?

El podcast se puede encontrar en Amazon MusicApple PodcastGoogle PodcastIvooxSpotify. ¡Ah! y como Google Podcast desaparece, lo podéis encontrar ya en Youtube / Youtube Music.

P.D.: Si la intro y la despedida os son familiares, que no os sorprenda. En un ejercicio de nostalgia podcasteril he hablado con Javier Lago para pedirle permiso y utilizar la introducción que hizo para el que, si no recuerdo mal, fue el primer podcast español sobre aviación: Remove Before Flight RBF podcast

La empresa australiana de drones Carbonix ayuda a los bomberos canadienses a detectar «incendios latentes» en Quebec

Las regiones del norte de Quebec tienen la peculiaridad de un suelo orgánico muy profundo donde las raíces de los árboles pueden seguir ardiendo escondidas y reiniciar los incendios, denominados incendios zombie, latentes o hibernantes, a veces semanas después de que los equipos de extinción se hayan marchado. Son estos fuegos los que pueden ser más destructivos, especialmente cuando se encuentran en zonas remotas donde la vigilancia es difícil y peligrosa, y ahí es donde la tecnología de Carbonix entra en juego.

Los drones Volanti de Carbonix están siendo utilizados por el operador especializado Exo Drone y la empresa de monitorización de incendios UAS ArgenTech Solutions para identificar los fuegos ocultos bajo el suelo.

Las dos compañías comenzaron a colaborar el año pasado para inspeccionar, cartografiar y analizar incendios forestales activos en todo Canadá. Juntas, están integrando sensores y tecnologías avanzadas en sus esfuerzos, incluido un módulo de seguimiento automático de vuelo que permite que los UAS se vuelen durante el día junto con aeronaves tripuladas en lugar de solo por la noche, como es la práctica habitual para los UAS en Canadá y Estados Unidos.

Este esfuerzo llega en un momento en que Quebec está experimentando una de las peores temporadas de incendios de su historia, con las Montañas Rocosas de Canadá viendo su incendio más grande jamás registrado; una ciudad, Jasper, ha sido consumida en un 30% por las llamas que alcanzan los 100 metros de altura.

Carbonix estima que los beneficios operativos y ambientales de reemplazar las aeronaves tripuladas convencionales (helicópteros y avionetas) o los equipos terrestres con drones Volanti supondrían una reducción de hasta el 80% en el coste operativo y hasta el 98% en la emisión de CO2, a la vez que mejorarían la seguridad y la eficiencia.

vía Carbonix y Australian Aviation.

Pilotos de sillón

Así es como hoy día muchos llaman de forma un tanto despectiva a los controladores de los UAVs. Pero éste no es un titular de hoy en día, sino ¡de 1947!

El artículo apareció en el número de febrero de 1947 de Modern Mechanix:

PILOTOS DE SILLÓN (Modern Mechanix, febrero de 1947)

Vuelan aviones con cajas que emiten pitidos. No son realmente pilotos de sillón, porque nunca vuelan desde sillones; es más probable que estén en jeeps o en aviones nodriza. Pero el nombre encaja, de alguna manera, porque estos muchachos nunca están cerca de los aviones que están volando. Son los pilotos por radio de las Fuerzas Aéreas del Ejército (USAAF(1)). Moviendo palancas en pequeñas cajas de cinco libras, controlan enormes, gigantes cuatrimotores que pueden estar a 50 millas de distancia detrás de un banco de nubes.

En su forma actual, el vuelo por radiocontrol es así: la pequeña caja del piloto tiene una pequeña «palanca» y un acelerador, muchos interruptores y un visor de televisión. Está conectado a un transmisor que envía las instrucciones del piloto al avión controlado de forma remota; enviando 10 señales moduladas diferentes, puede controlar 10 funciones de vuelo diferentes. En el avión, además del receptor y el aparato para convertir las instrucciones de la señal de radio en acción, hay un transmisor de televisión que puede mostrar el panel de instrumentos o, a elección del piloto remoto, mirar a través del parabrisas.

Debido a que emite sonidos parecidos a pitidos, la caja de control se llama “caja de pitidos”. El avión controlado se conoce como «bebé», probablemente porque generalmente hay un avión nodriza flotando cerca de él.

Eso es todo, excepto que el pilotaje remoto no es fácil. En el pequeño mando en la caja de control no se tiene la sensación que da un joystick normal, y «volar por las sensaciones en el culo» está naturalmente fuera de la ecuación. Además, debido a que el bebé realmente está siendo pilotado por su propio piloto automático, que recibe las «correcciones» de la caja de pitidos, hay un retraso en su respuesta (2). Esto genera una tendencia al sotre-control que hace que comience un movimiento de sube y baja cada vez mayor(3). Así que los pilotos remotos aprenden primero a manejarse en los PQ-14, pequeños aviones-blancos aéreo, que no solo son más fáciles de manejar sino también un poco más prescindibles que los B-17 Flying Fortresses. Después de familiarizarse con la caja de pitidos, toman el control de los aviones más grandes. Eventualmente, son capaces de despegar, maniobrar y aterrizar B-17 no tripulados.

Si hubiera otra guerra, no hay duda de lo que estos muchachos estarán haciendo. En tiempos de paz, los pilotos de salón enviarán aviones sin piloto a los huracanes para obtener nuevos datos meteorológicos, probarán nuevos aviones supersónicos y pilotarán aviones blanco para practicar con armas antiaéreas.

Notas

(1) Aeronautical Division, Signal Corps (1 agosto 1907 – 18 julio 1914); Aviation Section, Signal Corps (18 julio 1914 – 20 mayo 1918); Division of Military Aeronautics (20 mayo 1918 – 24 mayo 1918); U.S. Army Air Service (24 mayo 1918 – 2 julio 1926); U.S. Army Air Corps (2 julio 1926 – 20 junio 1941); U.S. Army Air Forces (20 junio 1941 – 18 septiembre 1947)

(2) Es un problema bien conocido, y cuanto más lejos está el avión controlado de forma remota, más retraso en recibir las órdenes, y con más antelación hay que preveer las acciones del avión.

(3) Oscilaciones inducidas por el piloto, o PIO.

Boeing valida el software para el respostaje de aviones tripulados desde UAVs

La apuesta de Boeing y de la US Navy para el repostaje en vuelo de las aeronaves embarcadas es el MQ-25 Stingray, un avión cisterna no tripulado que, hasta ahora, era controlado por pilotos de UAV desde el portaaviones. Esto dificultaba los repostajes a larga distancia del buque, por el retraso en la llegada de los comandos. Por eso Boeing ha desarrollado y validado este software, que permite al piloto del avión repostado tomar los controles del Stingray e iniciar la secuencia de repostaje por sí mismo, sin depender del piloto de UAV en el barco.

La validación la ha realizado en un vuelo simulado, integrando el software de control dentro del simulador, en el que un piloto humano volaba el F/A-18 mientras que controlaba el MQ-25.

Sería interesante saber más acerca de cómo de autónomo es el sistema y cuánta carga de trabajo adicional introduce al piloto, pues no podemos olvidar que, en 2022 en Europa, el MRTT fue el primer avión cisterna certificado para repostajes autónomos, y que incluso ha realizado repostajes autónomos a aviones no tripulados. Boeing lleva desde 2009 trabajando en repostaje autónomo de drones junto con el AFRL.

Nota de prensa

Boeing ha avanzado en su tecnología de trabajo en equipo de aeronaves tripuladas-no tripuladas (MUM-T) utilizando un F/A-18 Super Hornet digital y un MQ-25 Stingray. Las pruebas muestran que el software está maduro para su uso futuro en la Marina de los EE. UU. y tiene potencial para implementar la capacidad MUM-T en los Super Hornets F/A-18 Block II y III.

En un laboratorio de simulación, un equipo liderado por Boeing demostró virtualmente a un piloto de F/A-18 al mando de un MQ-25 no tripulado para liberar un embudo de reabastecimiento de combustible y reabastecer de combustible al Super Hornet, utilizando enlaces de comunicaciones existentes en ambas plataformas.

El nuevo software es el resultado de los ensayos que Boeing ha realizado anteriormente. Además del software actualizado, los equipos de prueba utilizaron hardware y enlaces de datos ya instalados en ambas plataformas para ejecutar el software finalizado, lo que demuestra aún más la preparación de Boeing para ofrecer esta capacidad a la Armada.

“El MQ-25 está diseñado para recibir normalmente órdenes de pilotos de vehículos aéreos en un portaaviones. Este software agregará una segunda opción, que permitirá a los pilotos iniciar comandos directamente desde su cabina”, dijo Alex Ewing, líder de desarrollo de nuevos productos F/A-18.

El software creado por Boeing reducirá significativamente el tiempo que tarda un F/A-18 en comunicarse con un MQ-25, dando a los pilotos una mayor flexibilidad para repostar combustible desde distancias más largas.

«El objetivo de las demostraciones era hacer que el reabastecimiento de combustible del MUM-T fuera lo más real posible», dijo Juan Cajigas, director del programa Advanced MQ-25. “El reabastecimiento de combustible en vuelo es como un ballet cuando dos aviones se juntan. Poder dirigir las actividades a través de un único piloto, de forma segura y eficiente, es un gran paso adelante en la tecnología de reabastecimiento aéreo”.