B747-200 con «pod» ventral para cargas muy grandes

Alzado de un B747-200 con un pod de carga ventral

El transporte de cargas de gran tamaño y/o muy pesadas ha hecho que muchos diseñadores, inventores e ingenieros se estrujen los cerebros en busca de la mejor forma posible de hacerlo. De ahí nacen aviones como el Guppy o la idea de llevar fuselajes colgando debajo de otro.

De hecho los proyectos para transportar el transbordador espacial colgando de aviones de fuselaje gemelo son relativamente conocidos. Así como la solución definitiva de llevarlo a lomos del 747.

Sin embargo el proyecto para transporte de cargas grandes en un pod ventral es menos conocido.

Definición del proyecto

En 1978 NASA contrató a Vought un estudio para instalar un gran contenedor ventral no presurizado bajo un 747-200 para transportar cargas militares de gran tamaño, siendo un vehículo M60 AVLB lanzapuentes o un tanque M60 los límites de tamaño superiores.

Configuración con tren retráctil

La idea es que el contenedor no fuera fijo, para minimizar al máximo las modificaciones a realizar a la aeronave. Y para poder convertir cualquier jumbo en carguero. Los requisitos era ser capaz de transportar 543 kN (122 000 lbf) de carga, correspndientes a uno de los dos vehículos nombrados arriba. Para que el vehículo cupiera dejando cierto margen de seguridad con las paredes del contenedor desmontable, se requería una cavidad de 4.11 m 03.5 ft) de alto,4.27 m (14.0 ft) de anchoi, y 9.30 m (30.5 ft) de largo. Además tenía que ser capaz de volar desde la costa oeste de Estados Unidos a Europa a 18000ft, por ser un contenedor sin presurizar, sin repostar.

Tren de aterrizaje

El tren del 747 debía ir retraído, y utilizar un tren incorporado en el contenedor ventral

Debido al tamaño del contenedor, el avión no podía apoyarse sobre su propio tren. Por ello el contenedor debía ser capaz no solo de transportar la carga, sino de soportar el peso de toda la aeronave mientras esta tuviera en tierra, gracias a un tren integrado en el mismo.

Aerodinámica

Se probaron tres configuraciones. Para ello Vought preparó tres modelos distintos, para correrlos en un programa de cálculo aerodinámico propio. Los fenómenos de compresibilidad no se tuvieron en cuenta, pues por debajo de Mach 0.72 los efectos de compresibilidad eran despreciables en el Jumbo, y se esperaban velocidades de crucero inferiores, como se confirmaría más adelante.

  • Tren totalmente retráctil
  • Tren fijo parcialmente carenado (al estilo del C-295)
  • Tren fijo sin carenar
747-200 con pod ventral y tren fijo parcialmente carenado

La configuración de tren fijo sin carenar era la más sencilla y menos pesada de todas. Sin embargo ofrecía tal resistencia aerodinámica que el empuje instalado disponible no era suficiente como para vencer toda la resistencia generada.

El tren semi carenado era una solución entre las dos anteriores, ofreciendo muy poco peso pero un aumento significativo de consumo de combustible respecto a la solución retráctil.

El tren retráctil ofrecía un consumo mucho menos reducido en crucero que el tren semicarenado. A cambio, la resistencia durante las fases en las que el tren estaba desplegado era considerablemente mayor, aunque la potencia instalada sí permitía operar con esta configuración.

El incremento de resistencia parásita para la configuración con el tren semicarenado era de un 37%, mientras que para el tren retráctil, en crucero con él retraído, era de tan solo un 23%. La fineza máxima (relación entre la sustentación y la resistencia), respecto al 747 en configuración limpia y volando a Mach 0.74 se reducía un 17% para el tren semi carenado y un 11% para el retráctil.

Configuración con tren fijo no carenado

Con las polares obtenidas y la potencia instalada disponible se determinó que la velocidad de crucero con el tren semicarenado sería de Mach 0.66 y de 0.68 para el tren retráctil.

Puntos de amarre, cargas y materiales.

El fuselaje debía modificarse en cinco puntos, para recibir la misma cantidad de puntos duros de anclaje. El primero sería en la estación 400, el mamparo del tren de morro. El segundo la estación 1000, en la caja de torsión, en el larguero frontal. El tercero sería en la estación 1241, también en la caja de torsión, en el larguero trasero. Los otros dos puntos se correspondçian con las cuadernas delantera y trasera del tren de aterrizaje principal, en las estaciones 1350 y 1480.

Para analizar el contenedor se utilizaron cargas inerciales cuasi-estáticas correspondientes a distintas maniobras. Así se establecían aceleraciones límite de 2.5G verticales y hacia abajo, 2G verticales y hacia arriba, 1G laterales y 6G hacia adelante, correspondiente a un caso de carga de aporrizaje. Para las cargas últimas aplicaban un factor de 1.5 a las anteriores, como suele ser habitual en aviación.

El tren de morro debió desplazarse desde debajo de la cabina de los pilotos, estación 390, hasta casi la vertical del encastre, estación 770, para mantenerla razonablemente corta y evitar que fuera demasiado larga y pesada. En cambio esto hizo que las cargas sobre el tren de morro se dispararan al doble que las cargas máximas en un 747 estándar.

Las elevadas cargas del nuevo tren delantero del contenedor debían repartirse entre la cuaderna del tren de morro y el larguero frontal, gracias a una estructura triangular.

Los herrajes de los puntos duros se fabricarían de forja, aluminio 2014-T6. El revestimiento, las cuadernas y las vigas del suelo del contenedor serían de aluminio 7075-T6. Los carenados serían igualmente de 7075-T6, pero de tan solo 0.64mm de espesor.

Pesos

La ligereza del tren de aterrizaje fijo y parcialmente carenado hacía que fuera posible utilizar el avión con su carga máxima de combustible.

Por contrario, el peso adicional del tren retractil hacía que el avión tuviera que despegar con menos carga de combustible, haciendo imprescindible desmontar el tren de aterrizaje original del avión si era necesario despegar con todos los depósitos de combustible totalmente llenos.

Pesos
Pesos

Alcance

A partir de los datos de resistencia obtenidos y las tablas de consumo, carga de pago y alcance, se determinaría el alcance del avión con el contenedor ventral. Los datos presentados abajo se obtendrían considerando una carga útil de 543kN, el avión a MTOW, y las reservas legales habituales para poder desviarse a cualquier alternativo.

A/C= Aircraft, avión; L.G.=Landing Gear, tren de aterrizaje; Mm=Megámetros=1000km

Ampliación del proyecto para llevar también un laboratorio espacial

Configuración con el nuevo contenedor. Se recomienda abrir la imagen en otra pestaña para ver mejor

Los resutlados, lejos de desanimar a la NASA, fueron considerados suficientemente buenos y prometedores como para ampliar el estudio y pensar en que el contenedor externo pudiera llevar no solo cargas militares sino también laboratorios .

En este segundo informe se basaban en el primero. El tamaño del contenedor debía ser ligeramente aumentado (91cm más alto y 23cm más ancho), y se contemplaba el poder utilizar contenedores presurizados sólo para las cargas científicas. Las militares seguirían viajando en contenedores sin presurizar.

Aunque no se realizarían estudios de estabilidad, sí se realizarían estudios de tunel de viento.

Con el contenedor militar se esperaba un alcance de 7240km a 18000ft. Con el laboratorio, más ligero, se podía llegar a los 7990km, a 18000ft. Si se utilizaba el contenedor presurizado se podía subir hasta los 35000ft y entonces el alcance quedaba en 10750km.

El diseño del contenedor fue algo más detallado que en la iteración anterior, empleando CAD. El análisis de las cargas se realizó también por ordenador, con un programa de elementos finitos llamado SPAR Structural Analysis System [pdf].

Modelo de elementos finitos
Modelo de elementos finitos

Los resultados indicaban que las cargas del tren de aterrizaje, incluidas las del morro, que eran más elevadas que en el avión sin modificar, se repartían de forma adecuada por la propia estructura del contenedor. Al 747 no le llegaban a través de los cinco puntos de amarre cargas más altas que las que podía soportar.

Los cálculos de masas y resistencia también se actualizaron, teiendo en cuenta el aumento del tamaño del contenedor. Y, por tanto, también se actualizaron las tablas con las características de alcance y velocidad.

FInalmente, y pese a que parecía técnicamente viable, no se fabricó ningún contenedor ventral ni se modificó ningún 747 para añadirle los cinco puntos duros necesarios para transportar el contenedor. Los motivos no figuran en los informes ni han trascendido de forma pública, al menos que tengamos constancia. Sin embargo no es difícil imaginar que habiendo disponibles transportes como el C-5 Galaxy y el C-141, en la época en la que se desarrolló el informe, y más recientemente la disponibilidad incluso de los Antonov 124 y 225, bueno ya no, esta modificación se hizo innecesaria. Aunque vistos los problemas logísticos y bloqueo de puertos de estos últimos años, ¡cuántas compañías de carga no hubieran dado buen uso de este contenedor!

Fuentes

Boeing 747 Aircraft with External Cargo Pod. NASA CR-158932, 1978

BOEING 747 aircraft with large external pod for transporting outsize cargo NASA-CR-159067, 1979

Empleo del autogiro por la artillería de los Estados Unidos y su éxito como aeronave-correo.

Si los españoles, los italianos y los británicos probaron el autogiro embarcado, y se realizaron ensayos para utilizarlo como ambulancia, o se planteó como solución de movilidad aérea urbana, ¿Cómo no iban a probarlo los estadounidenses para dirección de tiro artillero?

Autogiro Kellet KD-1, basado en el C.30

Actualmente se experimentan en el Ejército americano autogiros de un tipo especial que están destinados a ser empleados por la artillería. Estos autogiros tienen las siguientes características: Peso total, 900 kilogramos; potencia del motor, 225 CV.; velocidad máxima, 200 kilómetros por hora; velocidad en crucero, 165 kilómetros; aprovisionamiento de carburante, 586 kilogramos; velocidad ascensional, 300 metros por minuto.

El aprovisionamiento es suficiente para un vuelo de tres horas y media a la velocidad en crucero; para elevarse y aterrizar necesita una pista de 30metros.

Merced a las características especiales del autogiro, que puede practicar vuelos a poca altura y a marcha lenta, es posible proceder rápidamente al reconocimiento del terreno y recoger informes relativos a los emplazamientos de la artillería contraria, y de los centros de observación, así como de la distribución de los depósitos de municiones y centros de enlace. Todos los informes recogidos pueden transmitirse rápidamente al Mando, que podrá sacar provecho de ellos en beneficio de su artillería.

En lo que a medios de enlace se refiere el autogiro puede emplearse con éxito, pues es apto para aterrizar en casi todos los terrenos y transportar observadores de un puesto de observación a otro. Gracias a estas .propiedades el enlace infantería-artillería se facilita considerablemente.

Desde el punto de vista de la observación el autogiro es susceptible de procurar a los artilleros la posibilidad de orientarse rápidamente respecto a las tropas de Infantería más avanzadas, a las que apoya, y de localizar los nidos de ametralladoras y los centros de resistencia enemigos.

La comprobación del tiro se facilita considerablemente con el emipleo del autogiro, realizándose mejor que con un avión ordinario; otro tanto puede decirse respecto a la observación de los tiros de destrucción. En ambos cometidos el autogiro da mayor rendimiento que cualquier otro aeróstato por su mayor movilidad, menor riesgo de avería, techo más elevado y posibilidad de trabajo en condiciones atmosféricas desfavorables.

El autogiro permite también establecer líneas telefónicas en regiones poco accesibles; para este cometido se adapta al aparato una bobina que desarrolla el hilo mientras el autogiro vuela a poca altura.

Con el autogiro se puede facilitar considerablemente los aprovisionamientos de todas clases y el transporte de heridos.

Memorial de Ingenieros del Ejército, diciembre 1935 número XII

La empresa de Kellett se había establecido a finales de los años 20. A comienzos de los 30 compró la licencia de fabricación a De la Cierva y comenzó a fabricar sus autogiros, basados en el C.19, el primero que tenía mando directo, y el C.30. Hasta entonces los autogiros habían estado dotados de unas alas embrionarias con superficies de control. En un C.19 modificado se ensayó lo que se generelizaría posteriormente como sistema de control de las aeronaves de ala rotatoria: el sistema de mando directo, esto es, el control de la actitud de la aeronave mediante la inclinación del rotor y el cambio de paso de sus palas. Además el C.19 ya tenía la capacidad de despegue vertical, embragando el rotor al motor, que le dotaba de una velocidad de rotación tal que le permitiera el despegue.

El autogiro ensayado por el US Army estaba basado en el KD-1, con mando directo, de ahí la D en la designación, y posibilidad de despegue «de salto». La denominación militar sería YG-1.

Además de estas pruebas, se realizaron otras en 1939, en las que se enfrentarían los autogiros de Kellett contra el Platt-Le Page XR-1 y una Stinson lOS /YO- 54. El General Danford, buscando unos ojos para la artillería, quería enfrentar almenos 3 aparatos que fueran comerciales, baratos y ligeros.

El primero en entrar en competición fue el Stinson. El Platt-Le Page, aunque ya volaba, se encontraba en unas fases de desarrollo muy tempranas. Y el autogiro empezaría a volar poco después que la Stinson. La oposición del General Arnold no ayudó mucho a la creación de la especialidad de observadores para la artillería, ni facilitó los ensayos. Al final triunfarían los grass hopper, que verían servicio incluso embarcados. ¡Con lo fácil que era despegar desde una embarcanción con un autogiro en vez de con el sistema Brodie! ¡Cuánto mejor hubieran despegado desde las lanchas de desembarco los autogiros que los grass hopper!

Las pruebas fueron suficientemente satisfactorias como para que Kellett se embarcara en el diseño de su autogiro más avanzado, el XO-60/YO-60. Se ensayarían en 1942, pero nunca llegarían a entrar en combate.

Kellett YO-60 en vuelo
Kellett XO-60, propiedad del Smithsonian. La foto también es de su propiedad, y se reproduce sin ánimo de lucro

Si bien Kellett no lograría que sus aeronaves fueran adoptadas por el US Army, si logró que fueran las primeras de ala rotatoria en repartir correo

Correo aéreo en autogiro

Fuentes

La viabilidad de Lilium en entredicho

Uno de los primeros renders que se hicieron públicos por parte de Lilium, allá por 2016

Aunque empezamos a seguir con mucha ilusión todos los desarrollos relacionados con la movilidad aérea urbana, hubo un momento en que empezó a parecernos una burbuja: más de 200 empresas, muchas con experiencia cero en el desarrollo de aeronaves y el sector aeronáutico. con sus respectivos modelos presentando imágenes generadas por ordenador intentando lograr inversiones. Y de la ilusión pasamos a ser críticos con este tipo de transporte.

Y ahora, Iceberg Research presenta un estudio basado en información pública, y hemos de reconocer que refuerza en muchos aspectos la opinión que teníamos sobre el proyecto.

El artículo de investigación es largo, así que vamos a centrarnos en los puntos más importantes, si queréis leerlo en detalle el enlace al artículo está en las fuentes.

Baterías y Autonomía

Lilium promete un alcance de 155 millas. Aunque ninguno de sus prototipos ha volado hasta ahora más de 3 minutos, y ninguno a carga máxima (7 pasajeros). Se cree que uno de los motivos para esto es el gran consumo de sus baterías. Los argumentos de su CEO es que el consumo de las baterías se puede reducir, reduciendo al máximo el tiempo que la aeronave vuela a punto fijo durante el despegue y el aterrizaje. Los más críticos dicen, decimos, que sus estimaciones de tiempo se quedan cortas y posiblemente no contemplan los requisitos de las autoridades en cuanto a tiempos de reserva, en caso de motor y al aire, por ejemplo. Parecería que están calculados solo en condiciones óptimas, al menos los que se han hecho públicos.

Además el CEO esgrime como argumento la gran capacidad de sus baterías, MUY por encima de las que existen en el mercado hoy en día, y sólo próxima a algunas experimentales de laboratorio.

Tampoco han hecho público quién será el proveedor de las baterías, pero se cree que podría ser Zenlabs Energy Inc, empresa participada casi en un 35% por Lilium. Sin embargo esta compañía ya ha sido acusada anteriormente de haber publicado datos falsos sobre el rendimiento de sus baterías de forma consciente e interesada.

Además, si bien el diseño con hélices entubadas facilita la integración con el entorno, con usuarios no especialistas en el manejo de la aeronave o con peatones, al carecer de superficies cortantes, le hacen ser un modelo especialmente sediento, por ser el modelo menos eficiente para el vuelo a punto fijo.

Certificación

Según la hoja de ruta publicada por Lilium, la aeronave debería estar certificada por la autoridad europea para 2023. Sin embargo está lejos de cumplir los objetivos, tanto por número de horas de vuelo requeridas para la certificación, como por el estado de desarrollo de la aeronave: actualmente es aún más próxima a un demostrador tecnológico que un prototipo de pre-producción.

Financiación

Para terminar, y según las estimaciones de Iceberg Research, a Lilium le quedarían 18 meses para quebrar, salvo que recibieran alguna ronda de financiación extra.

Conclusión

El proyecto tiene mala pinta, va con retraso, e incluso la universidad donde estudió el CEO ha renegado de él, indicando que sólo quería asociar el nombre de la empresa al de la universidad por motivos de márketing, para un proyecto poco viable.

Esperamos que no sea otra empresa más de las que salió a bolsa a través de una SPAC y hace perder el dinero a sus inversores.

El que quiera leer el informe completo, que busque un sitio cómodo, que es largo, aunque interesante. Podéis encontrarlo en Iceberg Research

Fuentes

Iceberg Research, vía AVfoil.

Carga aérea con drones y su precio, inteligencia artificial y SPACS, con Julián Estevez

Coste del transporte por tonelada y milla, ¡calculado antes de la crisis energética!

Con Julián Estévez, @jeibros en Twittter, hablamos a menudo acerca de drones de carga aérea y sus costes, de inteligencia artificial, de SPACs (Special Purpose Acquisition Companies). Y después de un buen rato de charla acerca de las tres cosas pensamos, ¿por qué no grabarlo y que lo puedan escuchar todos? Ya sabéis que en esta casa cuando tomamos unas cañas con un amigo hablamos de cosas muy raras…

Julián Estévez es profesor de la Universidad del País Vasco, y es especialista en drones e inteligenica artificial.

El podcast se puede enontrar en Amazon Music, Apple Podcast, Google Podcast, Ivoox, Spotify

pd: Si la intro y la despedida os son familiares, que no os sorprenda. En un ejercicio de nostalgia podcasteril he hablado con Javier Lago para pedirle permiso y utlizar la introducción que hizo para el que, si no recuerdo mal, fue el primer podcast español sobre aviación: Remove Before Flight RBF podcast.

Video: Royal Navy prueba un autogiro embarcado (1942)

Captura de pantalla del autogiro a punto de despegar

Si la Armada española había probado en el Dédalo en 1934 el C.30, y la marina italiana lo había hecho en 1935, la Royal Navy lo haría en 1942. ¡Y por primera vez podemos verlo en vídeo! Pues de las otras pruebas solo hemos encontrado fotografías.

«Reggie» Brie, el mismo piloto que aterrizó en el crucero italiano, realizó estos ensayos para la Royal Navy.

Un Pitcairn PA-39 apontaba en el Empire Mersey, especialmente modificado con una cubierta de vuelo, en el verano de 1942, ¡casi diez años después que las primeras pruebas españolas! en la bahía de Newport News, Virginia. Los ensayos se realizaron en Estados Unidos, con la idea de dotar a los barcos mercantes de cierta capacidad antisubmarinos.

La imposibilidad de realizar vuelos a punto fijo con el autogiro dificultaban la toma en la cubierta de vuelo, segñun Brie. Allí en estados unidos conoció los trabajos de Sikorsky en su VS-300, y quedó impresionado por su maniobrabilidad, y la versatilidad que le dotaba el poder volar en todas las direcciones, así como el poder volar en estacionario, lo que le llevó a pensar que se desempeñaría mejor como arma embarcada.

Desde el 42 al 45 permaneció en Estados Unidos, donde se involucró activamente en sembrar tanto en la US Navy como a la Royal Navy la idea de la idoneidad del helicóptero como aeronave para lucha antisubmarina.

Aunque iban a ser mandados a Francia en 1939, como aeronaves de enlace, finalmente esa orden fue anulada. Dieron buen servicio ayudando a calibrar los radares de defensa de las islas británicas.

La incorporación de los autogiros a la flota británica se empezó a discutir en fecha tan temprana como 1935:

Autogiros para la Marina. Según el Daily Tele graph, el Almirantazgo ha decidido adquirir para la aviación naval una escuadrilla de autogiros.
[…]
En una conferencia leída por el Sr. Leslie Champness ante la North-East Coast Association of Engineers and Shipbuilders trató acerca de los proyectos de destructores, […] También trató de la factibilidad de dotar a estos buques de autogiros, que podrían despegar sin necesidad de catapultas y, finalmente, dió a conocer un proyecto de motor Diesel apropiado para destructores que con un pequeño sacrificio en la velocidad se lograría un con siderable aumento en el radio de acción

Revista General de Marina, 1935, Tomo 116

Fuentes

Cierva Autogiros: The Development of Rotary-Wing Flight. Washington, D. C.: Smithsonian Institution Press, 1988; Shrewsbury, England: Airlife Publishing Ltd. 1988 pp. 227-8, Brooks, Peter W.

Reginald Brie – Pioneer of Autogyros and Helicopters, textos de R. A. C. Brie compilados por David Gibbings. Royal Aeronautic Society

Revista General de Marina, 1935, Tomo 116