Vídeo: 747-8 carguero aterriza de emergencia por un motor en llamas

Un 747-8 carguero de Atlas Air, empresa que recibió la última reina que salió de la factoría, ha aterrizado con sus cinco tripulantes, que han seguido los procedimientos de emergencia de forma ejemplar, de forma segura en el aeropuerto de Miami.

El avión tiene sólo 8 años y lleva motores General Electric GEnx.

La tripulación declaró mayday al poco de despegar, e inició el regreso al aeropuerto del que acababa de despegar poco antes de llegar a los 4000ft, aterrizando 13 minutos después de su despegue. Cuando los controladores preguntaron si necesitaban quemar combustible para reducir el peso durante el aterrizaje, los pilotos respondieron que aterrizarían con el peso que llevaban.

El avión volaba de Miami a Juan Luis Muñoz Marín, en Puerto Rico.

Se está empezando a investigar lo sucedido.

Vídeo: Su-35 vuela desde el aeropuerto de Lleida

Aunque el Sukhoi es un avión de radio control volado por Alejandro, y el vídeo lo graba Tuckie desde un drone volando en formación. Y sí, tanto el uno como el otro volaron de forma legal dentro del aeropuerto. El resultado, espectacular, como cada vídeo que graba esta pareja, que forman un genial tándem, uno con sus radio control de cazas a reacción, el otro con sus vuelos en formación con sus cuadricópteros.

La pila de hidrógeno que alimentarña el motor ZEROe de Airbus, ha arrancado por primera vez

Venimos siguiendo estos últimos años con interés todos los avances realizados en hidrógeno, y en concreto la iniciativa ZEROe de Airbus. De hecho no hace mucho hablábamos del primer vuelo con hidrógeno realizado por Airbus, con un motovelero.

Pero la pila de hidrógeno que alimentará el motor del futuro que ha arrancado por primera vez es mucho más grande. El motor fue presentado en 2022, y sabemos que el plan de Airbus y Safran es ensayarlo en un A380, y que han hecho ya algunas pruebas con su proyecto Hyperion.

El ensayo se ha realizado en una bancada de ensayos, iron bird la llaman en la nota de prensa, totalmente instrumentada para medir el rendimiento de las células de hidrógeno y del motor, y además capaz de soportar los esfuerzos que induce en ella el motor mientras soporta el motor. ¡Y la pila ha llegado a los 1.2MW (~16100CV) de potencia!.

La apuesta del futuro de Airbus es el SAF a corto plazo, y el hidrógeno a más largo plazo. Según desvelan sus notas de prensa, pretenden tener volanto tan pronto como en 2035 un avión con motor de hidrógeno, y en 2026 el A380 número de serie 001 (MSN001).

Dejamos la nota de prensa debajo:

A finales de 2023, los equipos de ZEROe pusieron en marcha el futuro sistema de propulsión de hidrógeno diseñado para la aeronave de concepto eléctrico de Airbus. Además del sistema de celdas de combustible de hidrógeno, el «iron pod» -equivalente en motores al «iron bird«- contiene los motores eléctricos necesarios para hacer girar una hélice y las unidades que los controlan y mantienen refrigerados. Su exitoso encendido a 1,2 megavatios es un paso crucial en la hoja de ruta de Airbus para poner en servicio una aeronave de propulsión de hidrógeno para 2035.

El poder del elemento más abundante del mundo

En 2020, Airbus compartió cuatro conceptos de aeronaves propulsadas por hidrógeno con el público. Tres utilizaban la combustión de hidrógeno y motores híbridos para la potencia, y la cuarta era completamente eléctrica, utilizando celdas de combustible de hidrógeno y un sistema de propulsión de hélice. Estas celdas de combustible funcionan transformando el hidrógeno en electricidad a través de una reacción química. El subproducto de la reacción es agua (H2O), lo que resulta en casi cero emisiones.

El enorme potencial de las celdas de combustible de hidrógeno para descarbonizar la aviación las convirtió en una de las tecnologías clave elegidas para ser exploradas en mayor profundidad en el demostrador ZEROe, pero hubo un desafío. Aunque las celdas de combustible de hidrógeno ya existían en el mercado cuando comenzó el proyecto, ninguna proporcionaba la energía necesaria para alimentar una aeronave manteniendo un peso aceptable. Por lo tanto, en octubre de 2020, Airbus creó Aerostack, una empresa conjunta con ElringKlinger, para desarrollar pilas de celdas de combustible de hidrógeno que estarían en el corazón del sistema de propulsión eléctrica de una aeronave ZEROe.

Las pruebas exhaustivas del sistema de células de combustible se llevaron a cabo en Ottobrunn, Alemania, a solo 13 kilómetros de Múnich, en la Casa de Sistemas de Aeronaves Eléctricas (EAS, por sus siglas en inglés). La instalación de Airbus es la más grande de Europa para probar sistemas de propulsión y combustibles alternativos, y es donde se prueban los principales componentes del sistema de propulsión que impulsarán las hélices del demostrador.

En junio de 2023, Airbus anunció el exitoso programa de pruebas del sistema de células de combustible de hidrógeno, el cual alcanzó su nivel máximo de potencia de 1.2 megavatios. Fue la prueba más potente jamás lograda en la aviación de una célula de combustible diseñada para aeronaves a gran escala, y sentó las bases para el próximo gran paso del proyecto: integrar el sistema de propulsión completo con el motor eléctrico.

El hidrógeno alimenta el pod de hierro. El gran día tuvo lugar a finales de 2023, cerrando el año en un momento álgido para el equipo ZEROe. Después de completar con éxito las pruebas del sistema de celdas de combustible a 1,2 megavatios en junio y del tren motriz a 1 megavatio en octubre, los motores eléctricos del pod de hierro se alimentaron por primera vez con las celdas de combustible de hidrógeno.

“Fue un momento enorme para nosotros porque la arquitectura y los principios de diseño del sistema son los mismos que veremos en el diseño final”, dice Mathias Andriamisaina, jefe de pruebas y demostración del proyecto ZEROe. “El canal de alimentación completo se ejecutó a 1,2 megavatios, la potencia que pretendemos probar en nuestro demostrador A380”. Sistema de propulsión de celdas de combustible

Observar cómo interactúan los muchos sistemas durante esta prueba es clave para habilitar los siguientes pasos del proyecto. “Este proceso es cómo aprendemos qué cambios deben hacerse para que la tecnología sea apta para el vuelo”, dice Hauke Peer-Luedders, jefe del sistema de propulsión de celdas de combustible para ZEROe. “Medimos cómo funciona el sistema de propulsión en su conjunto probando la potencia necesaria para varias fases de vuelo diferentes, como el despegue, donde alcanzamos niveles máximos de potencia, y el crucero, cuando usamos menos potencia pero durante un período de tiempo más largo”.

Han pasado tres años desde que revelamos un concepto de avión alimentado al 100% por celdas de combustible de hidrógeno. Desde entonces, nos hemos adherido a nuestra línea de tiempo inicial y hemos hecho un tremendo progreso. El éxito reciente de poner en marcha el sistema de iron pod a 1,2 megavatios es un paso crucial hacia nuestro objetivo de poner un avión alimentado por hidrógeno en los cielos para 2035.

Glenn Llewellyn, vicepresidente de ZEROe Aircraft en Airbus

Las pruebas continuarán en esta primera versión del pod de hierro durante todo 2024. Una vez completado, el siguiente paso para el equipo ZEROe será optimizar el tamaño, la masa y las calificaciones del sistema de propulsión para cumplir con las especificaciones de vuelo. Las calificaciones incluyen las reacciones del sistema a la vibración, la humedad y la altitud, entre otros factores.

Una vez que se completen estas optimizaciones y pruebas, el sistema de propulsión de celdas de combustible se instalará en la plataforma de prueba de vuelo multimodal ZEROe, el primer A380 producido por Airbus, MSN001. Esto será seguido por las pruebas en tierra de los sistemas antes de la etapa crucial de probarlos en vuelo en el A380, actualmente programado para 2026.

Vuelta a los ULM armados, el Pipistrel Virus se estrena como UAV opcionalmente tripulado

No es la primera vez que hablamos de ultraligeros armados, o aviones ligeros como militares. Los últimos que habíamos visto eran los autogiros chinos armados, o los iraníes de patrulla fronteriza.

Tampoco es la primera vez que hablamos de que desarrollar un avión no tripulado grande desde cero es caro, puesto que tienes que invertir en desarrollar la célula y toda la electrónica y sistemas, y que por tanto puede ser conveniente desarrollar un avión no tripulado a partir de una célula ya existente. Utilizar una célula existente permite ahorrar costes, puesto que se ahorran los gastos de desarrollar un avión desde cero que llenar de aviónica y sistemas. Es decir, permite reducir los riesgos, centrarse sólo en el desarrollo que más valor añadido aporta a un sistema aéreo no tripulado: los sistemas.

Además, al partir de una plataforma fiable tripulada, se mitigan otros riesgos: los de operar una aeronave cuyas respuestas se desconocen para integrar unos sistemas también desconocidos… La creación de una aeronave opcionalmente tripulada permite el desarrollo de todos los sistemas de una aeronave no tripulada, pero con un piloto a bordo, realizando los ensayos de manera segura, y sin que las autoridades aeronáuticas competentes se preocupen demasiado.

Una vez desarrollados los sistemas, adquirida la experiencia en la operación de aeronaves no tripuladas grandes, integrado el armamento… el desarrollo de una aeronave de segunda generación, mejor optimizada y con una célula dedicada, es mucho más sencillo. Es decir, una aproximación bastante ingenieril de no intentar solucionar dos problemas al mismo tiempo, independizando los riesgos, y facilitando su mitigación.

Y no sólo se gana experiencia en el diseño, desarrollo e integración de aeronaves y sistemas, creando un conocimiento estratégico en la industria y el país, sino que además permite al ejército comenzar a desarrollar doctrinas, entrenamientos… con un nuevo tipo de armamento. Tal vez no sea la aeronave más avanzada del mercado, pero permite un desarrollo nacional de la industria y que el ejército gane experiencia en este tipo de sistemas. Esto no es incompatible con la compra de sistemas aéreos no tripulados más capaces a otros proveedores, aunque siempre con la vista puesta en el crecimiento propio.

Y esta es la aproximación que ha tomado el gobierno y el ejército eslovenos, partiendo del más que probado ultraligero Pipistrel Virus, el modelo de alas cortas (SW).

Pipistrel es un reputado fabricante eslovaco, que comenzó con la fabricación de veleros y motoveleros, y evolucionó hacia la fabricación de aviones ligeros biplazas y cuatriplazas de altas prestaciones. Son viejos conocidos en este blog por haber hablado ya de sus desarrollos eléctricos.

Ya había comenzado a crear aviones no tripulados basados en sus excelentes SW, y suponemos que esta buena base fue la que llevó a la empresa Timtec a escogerla como plataforma para el avión no tripulado armado que ha creado en colaboración con el ministerio de defensa esloveno.

El desarrollo de esta aeronave opcionalmente tripulada armada se ha llevado después de que el ministerio y la compañía firmaran un contrato por valor de 900k€ para el desarrollo de este drone, así como de un sistema anti-enjambres.

Y esta noticia la hemos conocido gracias al periódico Slovenian Posts, en inglés, que nos ha llevado a Tango Six, cuya información reproducimos debajo traducida.

Se muestra el primer dron armado esloveno: Pipistrel Virus SW con misiles guiados por láser

Como informó el principal medio digital esloveno 24ur el 26 de diciembre del año pasado, durante la entrega oficial del avión de transporte C-27J Spartan destinado a la Fuerza Aérea de Eslovenia, se exhibió públicamente por primera vez el primer avión no tripulado armado esloveno .

Se trata de una variante militar del avión Pipistrel Virus SW 121 , que cuenta con cuatro puntos de duros para misiles aire-tierra, y que se dice que tiene un alcance de 500 kilómetros.

Con esta muestra, el público pudo ver el resultado de la cooperación entre el Ministerio de Defensa esloveno y la empresa Timtec , que en septiembre de 2022 firmó dos contratos para la realización de proyectos de investigación y desarrollo por un valor total de algo menos de 900.000 euros . El primer contrato se refiere al desarrollo de una defensa contra enjambres de drones y el segundo al desarrollo de un sistema aéreo no tripulado armado.

En declaraciones a los medios, el director general de la Dirección de Logística del Ministerio de Defensa de Eslovenia, Željko Kralj, afirmó que el avión se basa en el avión civil Pipistrel Virus SV 121, cuyas alas han sido reforzadas para poder llevar cargas militares y en en el que se han colocado cuatro pilones para misiles aire-tierra. Kralj también dijo que el desarrollo del prototipo se encuentra actualmente en la sexta de las nueve fases de desarrollo tecnológico previstas y que actualmente se están negociando la continuación del proyecto. También se espera que el contrato se firme pronto y el objetivo es tener un avión operativo y probado en aproximadamente un año y medio .

Como informa 24ur, el avión se puede controlar tanto desde el avión como desde tierra y su alcance es de hasta 500 kilómetros. Está propulsado por un motor Rotax 912 iS (100hp, de inyección), puede alcanzar una altura de unos 17700 pies (5400 metros) y su velocidad es de 220 a 230 kilómetros por hora. El avión está equipado con un sistema optoelectrónico estabilizado de la empresa Timtec, que incluye tanto un telémetro láser como un designador de objetivos láser que puede funcionar eficazmente durante el día, la noche y en condiciones de baja visibilidad.

En cuanto al armamento, el director general de la Dirección de Logística dijo que cuatro lanzadores permitirán al avión transportar hasta unos 150 kilogramos de carga de combate. Sin embargo, como él dice, todavía no se sabe qué fabricante de armamento se elegirá, pero lo más probable es que se prueben soluciones israelíes, estadounidenses y posiblemente francesas y luego se elija la mejor.

En la descripción detallada del avión, Kralj explica que, como se trata de un avión biplaza, el piloto permanecerá en su lugar, mientras que el otro estará equipado con un equipo de control remoto. Además, está previsto que en la segunda fase se desarrolle una estación terrestre desde la que será posible controlar varios aviones.

Paralelamente al desarrollo del avión, también se está desarrollando un simulador destinado a la formación de pilotos o sus operadores desde tierra, según el caso. En el simulador se realizan diferentes pruebas que luego se aplican en la práctica.

El dron armado es casi en su totalidad el resultado de la investicación y desarrollo eslovenas y de la cooperación entre la industria de defensa eslovena, el ejército y el ámbito académico, se destacó durante la presentación. Además de la empresa Timtec , en el desarrollo también participan las empresas Devesoft, Guardiaris y Pipistrel , según informa 24ur.

Si todo va según lo previsto, en unos años el ejército esloveno dispondrá de un escuadrón con 12 drones armados de este tipo. Es posible, sin embargo, que para lograr el funcionamiento deseado se necesiten más aviones, el director general de la Administración de Logística citó como ejemplo tres aviones más.

Sin embargo, como afirma el Rey, hasta entonces habrá que superar algunos obstáculos y largos procedimientos.

– A esto le sigue la preparación de una extensa documentación y certificación de la aeronave, que es esencialmente la más exigente. Se necesita mucho tiempo para certificar un avión de este tipo como portador de armas y para tales fines. La agencia pública de aviación civil de la República de Eslovenia (CAA) y el control del tráfico aéreo tendrán que dar luz verde al avión. Mucho depende del plazo de entrega de los cohetes y del posterior inicio de las pruebas prácticas – añadió Željko Kralj.

Fortaleza volante para lanzar aviones a escala para ensayos supersónicos (Portaaviones aéreos 23)

Esta Fortaleza Volante es un PB-1 de la marina, un avión de combate marítimo que solía ir equipado con un gran radar bajo el fuselaje, para escanear la superficie, que ha sido reemplazado por una cogida para aviones a escala.

En concreto, el modelo ensayado es un F8F Bearcat reproducido a un 40% de su tamaño, utilizado para ensayar los efectos de la compresibilidad del aire al aproximarnos a la velocidad del sonido.

Según el boletín de la marina, la réplica podía alcanzar las 600mph tras ser soltada. Los ensayos se llevaban a cabo sobre la Estación Naval de Philadelphia. El avión a escala, hecho íntegramente en madera, no contaba con ningún tipo de motor. Tan solo un contrapeso, de 500 libras de plomo, instalado en el morro hacía que cayera y acelerara por efecto de la gravedad. El avión estaba equipado con controles automáticos, que lo sacaban del picado a una altitud de seguridad, y con un paracaídas, que permitía recuperarlo de una manera segura.

El fuselaje se dividía en tres secciones. La trasera, que contaba con los controles de vuelo, cuyo comportamiento se prefijaba en tierra. La de morro, con el contrapeso de plomo. Y la sección delantera, justo tras el morro, donde se instalaba toda la instrumentación de ensayos en vuelo y telemetría.

F8F Drop-Test Model, NASM

Fuentes

PB-1W «Flying Fortress» Carries a replica of an F8F Bearcat aloft for release in aerodynamic characteristics tests.

All Hands, The Bureau of Naval Personnel Information Bulletin. 1947