Es normal, si un avión entra en tu propio espacio aero, escoltarlo para invitar a salir de él.
Es relativamente normal que en aguas internacionales (espacio aero internacional) se produzcan encuentros tensos entre aviones de países que no se miran con buenos ojos.
Pero siempre guardando las formas, desde el lado de la seguridad, sin armar misiles, a una distancia de seguridad…
Sin embargo, en los últimos tiempos han sido numerosas las notificaciones de intercepciones rusas un tanto irregulares, con maniobras peligrosas que han supuesto riesgo para las tripulaciones de ambas aeronaves.
Éste es el último caso que se ha producido,y se puede observar cómo el Flanker hace dos pasadas sobre el Reaper, vertiendo combustible encima. Y, muy posiblemente, colisionando de forma involuntaria contra el UAV en la segunda, derribándolo. ¿O tal vez fuera un tarán intencionado?
En los últimos segundos del vídeo se aprecia cómo varias palas de la hélice están dañadas. Y teniendo en cuenta la ubicación de la misma y que el empenaje del avión tiene configuración en Y, no es difícil imaginar que el MQ-9 ha sufrido daños también, al menos, en el empenaje de cola.
El verano pasado os presentábamos el X-62 VISTA (VISTA proviene de Variable Stability In-flight Simulator Test Aircraft o Variable In-flight Stability Test Aircraft). Básicamente, un F-16 biplaza (F-16D Block 30 Peace Marble Il con aviónica de un Block 40)altamente modificado para convertirlo en un avión experimental, y un «simulador de vuelo volante».
Aunque eso de simulador y en vuelo parezca contradictorio, tiene una fácil explicación: este avión es capaz de simular el comportamiento de casi cualquier otro avión en vuelo, del pesado B-52 al ágil caza ligero HAL Tejas. Algo así como aquél avión que era capaz de simularlos a todos… pero versión ultra moderna.
Lo que hace que el avión experimental sea aún más revolucionario es su reciente inclusión en el programa Skyborg de la USAF, que busca explorar posibles aplicaciones militares de sofisticados sistemas de inteligencia artificial para dotar de autonomía táctica a los aviones de combate no tripulados (UCAV).
Y con esto último está relacionada la última nota de prensa que ha hecho pública Lockheed Martin:
El Lockheed Martin VISTA X-62A, un avión de entrenamiento único en su tipo, fue pilotado por un agente de inteligencia artificial durante más de 17 horas recientemente, lo que representa la primera vez que la IA participa en un avión táctico. […] El vuelo de más de 17 horas de un agente de AI se llevó a cabo como parte de una serie de pruebas en diciembre.
La nota de prensa indica que son unos ensayos realizados durante el último mes de diciembre. Sin embargo, la redacción de la nota de prensa nos lleva a confusión, no tenemos claro si la IA ha totalizado 17h de vuelo a los mandos, o si ha realizado un único vuelo de 17h, lo que hubiera supuesto repostajes en vuelo intermedios. En principio entendemos que es lo primero.
VISTA nos permitirá desarrollar y probar en paralelo técnicas de inteligencia artificial de vanguardia y nuevos diseños de vehículos no tripulados. Este enfoque, combinado con pruebas enfocadas en nuevos sistemas de vehículos a medida que se producen, madurará rápidamente la autonomía de las plataformas no tripuladas y nos permitirá dotar a nuestros combatientes de capacidades tácticamente relevantes.
Dr. M. Christopher Cotting, director de investigación de la Escuela de Pilotos de Pruebas de la Fuerza Aérea de EE. UU
Siguiendo con la nota de prensa…
Las actualizaciones incluyen un sistema de simulación VISTA (VSS) actualizado proporcionado por Calspan, y el algoritmo de seguimiento del modelo (MFA) de Lockheed Martin y el sistema para el control autónomo de la simulación (SACS). Los sistemas SACS y MFA integrados juntos brindan nuevas capacidades a VISTA para que pueda usarse para realizar los experimentos de prueba de vuelo más avanzados que enfatizan la autonomía y de la IA.
Esta nueva capacidad del sistema de misión con VSS, MFA y SACS enfatiza el desarrollo e integración avanzados de algoritmos de aeronaves autónomas. En el corazón del sistema SACS se encuentra Skunk Works Enterprise-wide Open Systems Architecture (E-OSA) que impulsa la Enterprise Mission Computer versión 2 (EMC2) o «Einstein Box».
Los componentes adicionales de SACS incluyen la integración de sensores avanzados, una solución de seguridad multinivel y un conjunto de pantallas de tableta Getac en ambas cabinas. Estos componentes mejoran las capacidades de VISTA al tiempo que mantienen su ventaja de creación rápida de prototipos, lo que permite específicamente cambios rápidos de software para aumentar la frecuencia de los vuelos de prueba y acelerar el ritmo del desarrollo de la IA y la autonomía para satisfacer las necesidades urgentes de seguridad nacional.
VISTA continuará desempeñando un papel integral en el rápido desarrollo de las capacidades de IA y autonomía para la Fuerza Aérea de los EE. UU. Actualmente está pasando por una serie de inspecciones de rutina. Los vuelos se reanudarán en la Base de la Fuerza Aérea Edwards a lo largo de 2023.
Northrop Grumman está colaborando con la NASA para desarrollar y probar soluciones para integrar grandes sistemas de aeronaves no tripuladas en el espacio aéreo estadounidense.
El esfuerzo se centrará en las operaciones de carga aérea y es parte del subproyecto Pathfinding for Air Traffic Management-eXploration (ATM-X) de la NASA para el espacio aéreo con vehículos autónomos. Este trabajo incluirá la coordinación con la FAA, revisiones de preparación de vuelo y desarrollo de un plan de prueba para simulaciones y demostraciones de vuelo.
Al asociarnos con la NASA, detallaremos los requisitos y las soluciones para hacer posible que las aeronaves autónomas, en este caso de carga aérea, se integren sin problemas y de manera segura en el espacio aéreo nacional. Nuestro trabajo conjunto mejorará el acceso al espacio aéreo y transformará la forma en que se utilizan los sistemas no tripulados para transportar mercancías a través de los EE. UU.
Tom Jones, vicepresidente corporativo y presidente de Northrop Grumman Aeronautics. Sistemas
La diferencia con nuestra entrada de enero de 2021 es que. en esta ocasión, el ensayo se ha realizado con el A400M en vuelo, y que el avión lanzado ha podido ser operado a continuación de forma normal.
La idea es integrar los aviones parásitos lanzados desde aeronaves nodriza en el sistema de combate futuro (FCAS), en el que se incluye el caza de nueva generación y otros sistemas de armas complementarios.
Según la nota de prensa, «Los Remote Carriers serán un componente importante del FCAS. Volarán en estrecha cooperación con aviones tripulados y apoyarán a los pilotos en sus tareas y misiones. Los aviones de transporte militar, como el A400M, desempeñarán un papel importante: como naves nodriza, acercarán los Remote Carriers lo máximo posible a sus zonas de operaciones antes de soltar hasta 50 unidades pequeñas o hasta 12 más pesadas. Éstos se unirán entonces a las aeronaves tripuladas, operando con un alto grado de automatización aunque siempre bajo el control de un piloto».
Es decir, entran en la filosofía de UAVs actuando como puntos fieles y enjambres, en cooperación con los aviones tripulados.
Primicia europea: La demostración de vuelo a gran escala dirigida por Airbus combina cazas, un helicóptero y drones
En la primera demostración de vuelo multidominio a gran escala de Europa, dirigida por Airbus, dos aviones de combate, un helicóptero y cinco sistemas aéreos no tripulados (Remote Carrier – RC) se unieron y realizaron una misión que podría darse en situaciones reales. El Manned-Unmanned Teaming Demonstrator del proyecto FCAS (Future Combat Air System) pasa ahora a la siguiente fase: seguir allanando el camino del FCAS mediante el desarrollo de un demostrador de sistemas aéreos no tripulados en los próximos años.
Con la demostración de vuelo multidominio (Multi-Domain Flight Demo – MDFD) hemos demostrado por primera vez en Europa cómo funcionan las capacidades y funcionalidades del conjunto de aeronaves tripuladas y no tripuladas, con hasta diez activos conectados en un escenario inspirado en la vida real y en condiciones muy similares a las operativas. Este es un ejemplo más de cómo superamos los límites y de ser pioneros en tecnologías para que nuestros clientes puedan cumplir sus misiones: salvar vidas y garantizar un futuro mejor para todos nosotros.
Jean-Brice Dumont, Head of Military Air Systems at Airbus
En la demostración llevada a cabo a finales del verano de 2022, los aviones de combate, el helicóptero y los sistemas aéreos no tripulados se conectaron a través de un enlace de datos de red aérea compacta mallada (CANDL) que les permitió interactuar sin interrupciones por encima de Rovajärvi, Finlandia, y ayudar a librar al mundo de un enemigo ficticio.
Un Learjet 35 de la filial GFD, de Airbus, actuó como caza sustituto y la tripulación a bordo operó los drones, representados por cinco drones Airbus Do-DT25 modificados. Dos de ellos estaban equipados con sensores de Medidas de Apoyo Electrónico (ESM) de la empresa asociada MBDA Alemania para detectar las posiciones de los misiles tierra-aire del enemigo ficticio. Los tres restantes estaban equipados con cámaras electro ópticas (EO) que grababan y confirmaban visualmente la ubicación de las defensas aéreas. Además, un caza simulado que actuaba como avión de mando y control era visible en las pantallas de la carpa de visitantes donde los representantes de las fuerzas armadas alemanas y finlandesas seguían la demostración.
Mientras se iba eliminando la defensa aérea, las tropas de tierra solicitaron apoyo aéreo cercano a través de un Joint Terminal Attack Controller (JTAC) para que les ayudara a deshacerse del enemigo ficticio. Un helicóptero Airbus H145M respondió inmediatamente, ayudando al equipo a cumplir su misión. Paralelamente, el H145M se unió a uno de los EO RC para vigilar los alrededores y proporcionar a las fuerzas especiales datos de reconocimiento. La tripulación del helicóptero dirigía el RC directamente desde la cabina, mientras que el vídeo del Do-DT25 se transfería directamente al H145M. El JTAC, situado cerca de las tropas en tierra, coordinó el ataque a través de una notificación de emergencia digital (requerimiento 9-liner) al helicóptero y asumió parcialmente el mando y control de un EO RC para evaluar finalmente el efecto de la operación.
El MDFD concluyó la segunda fase del proyecto denominado FCAS MUM-T (Future Combat Air System Manned-Unmanned-Teaming) Demonstrator, financiado por la agencia de adquisiciones alemana BAAINBw. Ahora el proyecto entrará en la fase III, que madurará las capacidades existentes y desarrollará otras nuevas, para permitir las operaciones iniciales en la década de 2030 con los aviones de combate existentes y los sistemas aéreos no tripulados desarrollados para entonces. Recientemente se ha firmado un contrato inicial para avanzar en los próximos pasos entre Airbus y BAAINBw.
Los sistemas aéreos no tripulados de diferentes tamaños y capacidades son activos vitales para el FCAS, donde operarán en equipo con el caza de nueva generación tripulado y el Eurofighter, conectados a una red de combate en la nube cibersegura. Al operar bajo el mando de un avión de combate tripulado, los RC proporcionan una mejor protección a los pilotos, al tiempo que mejoran la operativa envolvente y la capacidad de actuar en situaciones de riesgo.