Northrop Grumman está colaborando con la NASA para desarrollar y probar soluciones para integrar grandes sistemas de aeronaves no tripuladas en el espacio aéreo estadounidense.
El esfuerzo se centrará en las operaciones de carga aérea y es parte del subproyecto Pathfinding for Air Traffic Management-eXploration (ATM-X) de la NASA para el espacio aéreo con vehículos autónomos. Este trabajo incluirá la coordinación con la FAA, revisiones de preparación de vuelo y desarrollo de un plan de prueba para simulaciones y demostraciones de vuelo.
Al asociarnos con la NASA, detallaremos los requisitos y las soluciones para hacer posible que las aeronaves autónomas, en este caso de carga aérea, se integren sin problemas y de manera segura en el espacio aéreo nacional. Nuestro trabajo conjunto mejorará el acceso al espacio aéreo y transformará la forma en que se utilizan los sistemas no tripulados para transportar mercancías a través de los EE. UU.
Tom Jones, vicepresidente corporativo y presidente de Northrop Grumman Aeronautics. Sistemas
Visión artística del demostrador del airliner del futuro, con ala super esbelta y arriostrada
En el intento de lograr reducir las emisiones de la aviación, Boeing y la NASA han lanzado un proyecto de 425 millones de dólares para diseñar y fabricar un avión demostrador de lo que podría ser el avión de aerolínea del futuro.
Este avión mantiene la forma clásica de fuselaje de tubo, e incorpora un ala de gran alargamiento arriostrada. El ala de gran alargamiento reduce la resistencia inducida, y la riostra hace posible esta gran envergadura sin subir en exceso el peso de la unión al fuselaje, o encastre.
Alas de tal envergadura podrían requerir mecanismos de plegado, cual avión de portaaviones, si superasen las envergaduras para las que están diseñados actualmente los aeropuertos.
Para los que esperaban un avión del futuro con forma de ala volante, explicar que mantener la forma de tubo tiene sentido dado que en un ala volante la presurización es compleja, el tiempo de evacuación podría crecer, las posiciones de los asientos más alejadas de la línea central del avión podrían ser incómodas para los pasajeros durante distintas maniobras, además de que la logística aeroportuaria, incluidas terminales, están diseñadas para aviones de fuselaje tipo tubo. Así pues no es sorprendente que se mantenga esta configuración de tubo y ala.
También podemos observar en el modelo que la flecha del ala, la inclinación hacia atrás de la misma, es menor, de lo que se infiere unas menores velocidades de crucero. Por la forma del ala y la posición de los motores en él se abre la posibilidad a nuevas motorizaciones, desde turbofanes de más alto índice de derivación a turbohélices avanzados o incluso conceptos de rotor abierto.
– La NASA, Boeing y sus socios tienen como objetivo reducir el uso de combustible y las emisiones hasta en un 30 % en aviones de pasillo único
– Los avances en tecnología sostenible son cruciales para alcanzar el objetivo de la aviación civil de tener cero emisiones netas de carbono para 2050
La NASA seleccionó a Boeing para liderar el desarrollo y las pruebas de vuelo de un demostrador tecnológico del concepto Transonic Truss-Braced Wing (TTBW).
Las tecnologías demostradas y probadas como parte del programa Demostrador de vuelo sostenible (SFD) proporcionarán información imprescindible para los diseños futuros , que podrían conducir a avances aerodinámicos y de eficiencia de combustible.
Cuando se combina con los avances esperados en los sistemas de propulsión, los materiales y la arquitectura de los sistemas, un avión de pasillo único con una configuración TTBW podría reducir el consumo de combustible y las emisiones hasta en un 30 % en relación con los aviones de pasillo único más eficientes de la actualidad, dependiendo del perfil del vuelo. El programa SFD tiene como objetivo promover el compromiso de la industria de la aviación civil de alcanzar cero emisiones netas de carbono para 2050, así como los objetivos establecidos en el Plan de Acción Climática de la Aviación de EE. UU. de la Casa Blanca.
Las alas ultra esbeltas arriostradas de gran alargamiento, podrían eventualmente acomodar motores más avanzados, cuyo uso ahora queda restringido por la falta de espacio debajo del ala en las configuraciones actuales. Para el vehículo de demostración, Boeing utilizará elementos de vehículos existentes y los integrará con componentes completamente nuevos.
La financiación de la NASA a través del Acuerdo de la Ley Espacial SFD asciende a 425 millones de dólares. El programa SFD también aprovechará hasta $ 725 millones en fondos de Boeing y sus socios de la industria para dar forma al programa de demostración y satisfacer las necesidades de recursos requeridas. Por separado, las inversiones internas anteriores de Boeing para las fases recientes de investigación de aviación sostenible totalizan $ 110 millones.
El concepto de fuselaje TTBW es el resultado de más de una década de desarrollo respaldado por la NASA, Boeing y las inversiones de la industria. Bajo programas anteriores de la NASA, incluido el programa Subsonic Ultra Green Aircraft Research de la agencia, Boeing realizó extensas pruebas en túneles de viento y modelado digital para avanzar en el diseño del TTBW. Los primeros estudios conceptuales comenzaron bajo el programa de Aviación Ambientalmente Responsable de la NASA.
Y ya sabéis, si os ha gustado la entrada, ¡seguidnos!
EOSX, una compañía que pretende revolucionar el turismo espacial, ha anunciado que realizará su primer vuelo “espacial” en 2023, respetando el calendario que ya anunciara en 2020. El primer vuelo se produciría desde Sevilla, y el segundo desde Emiratos Árabes.
Acaba de firmar un acuerdo por el que instalará su nave de fabricación de vehículos “NAO V” en el Polo Aeronáutico de Sevilla.
¿Por qué entrecomillamos “espacial” y no nos referimos al NAO V como nave espacial?
Como ya hiciéramos en 2020, y al contrario que la prensa, nos negamos a llamar a este tipo de vuelo “espacial” por el simple hecho de que no lo es. Aunque la propia web denomine a la altitud de vuelo de sus aeronaves “espacio cercano”, por definición y convención, el espacio no comienza hasta la línea de Karman. Estas aeronaves son globos estratosféricos y por tanto son vuelos estratosféricos, nunca espaciales. Ni por ello tampoco se puede hablar de nave espacial.
¿Por qué tampoco hablamos de vuelo suborbitales ni de órbitas bajas?
En la propia web de EOS, así como en la prensa, se habla de un sistema de vuelo de órbita baja. Sin embargo, las órbitas bajas (o LEO) empiezan en la línea de Karman y terminan en el cinturón de van Allen, por tanto, tampoco se puede considerar un vehículo de órbita baja.
En cuanto al vuelo suborbital, es un vuelo que implica salir al espacio y volver, pero sin llegar a entrar en órbita. Y ya sabemos que no se sale al espacio en un globo estratosférico.
La experiencia especial, que no espacial, estratosférica.
Aún así, un vuelo en globo estratosférico para contemplar la Tierra desde allí y ver la curvatura terrestre, debe ser una experiencia digna de vivir. Según la propia web de EOSX, la experiencia “espacial” incluiría
Día 1: presentación de los vehículos así como experiencias de realidad virtual
Día 2: experiencia en microgravedad (vuelo parabólico) y comida de Estrella Michelín en vuelo
Día 3: Día de tratamientos antiedad, superalimentros, traje hiperbárico y nutricionista
Día 4: Experiencia inmersiva basada en la colonización de la Luna y cena en restaurante futurista
Día 5: Desplazamiento en helicóptero hasta el punto de lanzamiento del globo estratosférico, vuelo en globo, recepción y ceremonia de graduación
Día 6: Día cultural, con visitas a museos, gastronomía, arte y atracciones turísticas locales, en función de si el vuelo se hace desde Sevilla o desde Emiratos, y de lo que solicite el cliente.
Tanto Francia como España necesitan jubilar aviones de patrulla marítima y reemplazarlos.
Francia ha pedido a Airbus y Dassault un estudio sobre sus aviones, y está actualizando sus Atlantique mientras tanto.
España ha jubilado su último Orion, y está sin capacidad de patrulla marítima mientras llega el C295MPA, que es sólo una solución interina al reemplazo definitivo del P-3 y que no cubre el 100% de sus capacidades.
La DGA lanza dos estudios de arquitectura para el futuro avión de patrulla marítima
El 22 de diciembre de 2022, la Dirección General de Armamento francesa (Direction Générale de l’Armement) solicitó a los fabricantes Airbus Defence and Space y Dassault Aviation dos estudios sobre la arquitectura de un futuro sistema de patrulla marítima (Patmar) basado en uno de sus aviones: A320neo de Airbus Defence y Space y Falcon 10X de Dassault Aviation, por un importe de 10,9 millones de euros -impuestos incluidos- asignados por estudio para cada fabricante.
Deberán ofrecer una solución económicamente atractiva que satisfaga las necesidades operativas de la Marine Nationale francesa en el horizonte posterior a 2030. Estas soluciones deberían permanecer abiertas a la cooperación con otros socios europeos potencialmente interesados. Las innovaciones estudiadas durante estos estudios pueden estar relacionadas con la mejora de sensores, medios de comunicación, la introducción de lógica basada en inteligencia artificial o la integración de armamentos, en particular el futuro misil antibuque.
Este trabajo, que tiene una duración prevista de 18 meses, contribuirá a las discusiones sobre el futuro avión de patrulla marítima (Patmar), cuyo lanzamiento está previsto para 2026 con miras a dotar de una nueva capacidad al ejército en la década 2030-2040.
La misión de patrulla marítima la cumple actualmente en Francia una flota de 22 aviones Atlantique 2 (ATL2) operados por la Marine Nationale desde la base aérea naval de Lann-Bihoué.
Encargado a principios de la década de 1990, el ATL2 es un avión multimisión bimotor y largo alcance. Destinado principalmente a la guerra antisubmarina y antibuque de baja a alta intensidad, así como a misiones de inteligencia. Su renovación, actualmente en curso, se hace sobre un total de 18 aviones y se completará en 2025. Esto permitirá operar a la Marine Nationale hasta la entrada en servicio de un nuevo avión de patrulla marítima.
Airbus firmará el C295 MPA español a principios de 2023, también lanza la variante MSA
Airbus está cerca de finalizar un contrato de desarrollo de un avión de patrulla marítima (MPA) C295 con España, al mismo tiempo que lanza un avión de vigilancia marítima (MSA).
Hablando en el Trade Media Briefing anual de Airbus, celebrado en Madrid a mediados de diciembre, Jean-Brice Dumont, director de Military Air Systems, dijo que se prevé firmar antes del final del primer trimestre de 2023 un contrato para la adquisición del C295 MPA, para reemplazar al Lockheed P-3 Orion que ha sido retirado por el Ejército del Aire Español a finales de 2022. Los cuatro 295MPA que adquiriría el Ejército del Aire serían solo una solución interina al reemplazo de los Orion.
Como señaló Dumont, el C295 MPA estará equipado con el Sistema Táctico Totalmente Integrado (FITS) de última generación, que reúne el radar, la torreta del sensor, las sonoboyas, el detector de anomalías magnéticas (MAD) y el soporte electrónico. (ESM) según se requiera para la protección de patrulla marítima, guerra antisubmarina (ASW), guerra antisuperficie (ASuW), búsqueda y rescate (SAR) y zona económica exclusiva (ZEE).
Además de los P-3M retirados, el EdAE también cuenta con ocho CN235 MSA (llamados Vigilancia Marítima [VIGMA]). Se utilizan para tareas de patrullaje marítimo y SAR, para lo que están equipados con el sistema de misión FITS, además de un radar de búsqueda, una torreta sensora FLIR y un enlace de datos Link 11. Para estos, Airbus está proponiendo un C295 MSA como reemplazo.
No es la primera vez que criticamos los eVTOL, o que recogemos lo que otros medios han publicado sobre su viabilidad o su cerficabilidad. Hoy vamos a intentar resumir los datos económicos que han publicado en distintos artículos Leehan News y Aviation Week.
La movilidad aérea urbana sigue dando de qué hablar. Cada vez hay más aeronaves que se aproximan a la certificación. Y por fin parece que aparecen voces críticas con este “nuevo” medio de transporte en los medios especializados. Algunos, como Leeham News, han sido críticos siempre. Otros han publicado muchas notas de prensa pero sin hacer ninguna crítica a la misma, y ahora parece que empiezan a analizar números. Vamos a intentar resumir todos esos números que han ido haciendo en estos medios. Todo el artículo, y las críticas de estos medios podrían resumirse en una sola pregunta: ¿Si tan alta es la demanda de este tipo de servicios, por qué no se está cubriendo ya con helicópteros ligeros?¿Son realistas son los planes comerciales de sus operadores?
Lilium, que tiene como objetivo redefinir el transporte aéreo urbano y regional, en especial cubriendo rutas que están “desatendidas”. Espera que su Lilium Jet para seis pasajeros pueda ofrecer un precio de 2.25$/asiento-milla mientras opera 10 h. por día. Muchos aviones de fuselaje ancho tienen suerte si logran este nivel de utilización, y Lilium planea hacerlo con vuelos mucho más cortos (el alcance de su avión es de 155 millas).
Las hipótesis de Volocopter para su VoloCity de dos pasajeros son igualmente poco realistas. El eVTOL de 18 rotores, diseñado para vuelos urbanos cortos, tiene un alcance de poco más de 20 millas y costes de asiento-milla similares a los del Lilium Jet. Su utilización anual estimada es de 3000 h por año, comparable a un avión de pasajeros de pasillo único.
Otro eVTOL de los que parece que van a ser certificados en breve y que se puede tomar en serio es el Joby S4, un avión para cuatro pasajeros con una velocidad de 200 mph y un alcance de 150 millas. El precio anticipado por asiento y milla de Joby es de aproximadamente 3$ con una utilización anual de 2500 horas, más que un avión regional típico.
Otra startup, Archer, fue noticia en noviembre cuando United Airlines anunció planes para lanzar su primera ruta eVTOL en Nueva York en 2025, uniendo el Aeropuerto Internacional Newark Liberty y el centro de Manhattan utilizando su nuevo avión Midnight.
¿Por qué estos planes comerciales iniciales incluyen niveles de utilización tan elevados? Porque ese nivel de utilización tan alto es indispensable para que el negocio sea viable, si no es improbable que se amorticen los altos precios de los eVTOL que, a razón de 2-4 M$, son sustancialmente más altos que los helicópteros convencionales. ¡Un Robinson R44 –cuatriplaza- cuesta menos 0.5M$! Si hay tanta demanda acumulada de este servicio, ¿por qué no se cubre el mundo con taxis aéreos R44?
La situación huele a lo que el director gerente de AeroDynamic Advisory, Richard Aboulafi, llama la espiral de vida insostenible: alguien ofrece un producto o servicio con costos unitarios increíblemente bajos. Estos costos bajos se basan en tasas de producción increíblemente altas o suposiciones de utilización increíblemente altas. Estos números increíblemente altos de utilización/producción se basan a su vez en costos unitarios increíblemente bajos. Vamos, maquillar números para demostrar que un negocio inviable sí lo es.
El concepto de trasladar pasajeros de centros urbanos concurridos a aeropuertos no es nuevo. ¡Si ya se pensó en poner una terminal multimodal con autogiros incluidos en el Madrid de los años 30! New York Airways conectó el centro de Manhattan con JohnF. Kennedy, Newark, Teterboro Airport y White Plains Airport desde 1956 hasta 1979 antes de que los accidentes los llevaran a la bancarrota. También en Bruselas podíamos ver en el centro mismo de la ciudad un helipuerto para conexiones rápidas entre ciudades cercanas.
Después de un paréntesis de 40 años, este servicio resurgió recientemente gracias a Blade, que transporta a 12000 pasajeros al año entre el centro de la ciudad y los aeropuertos JFK y Newark con helicópteros convencionales. El valor añadido de este servicio es convincente. Reemplaza un viaje de 2h y 100$ en Uber, taxi o similar por un vuelo de 5 minutos y 195$. El coste operativo directo por vuelo es de aproximadamente$ 500$, (de los cuales 200$ son tasas).
Blade planea hacer la transición de helicópteros convencionales a eVTOL. Su gerencia anticipa que la nueva tecnología inicialmente permitirá una modesta reducción en los costos de vuelo en rutas clave y espera mayores ahorros con el tiempo a medida que se reduzcan los costos de la batería. Ese mismo vuelo Midtown-JFK tendrá costos operativos directos de $430, una reducción del 14%. Esto no es lo suficientemente revolucionario como para respaldar el crecimiento del mercado eVTOL previsto a decenas de miles de millones de dólares para 2030 ni permite los bajos costes que se anuncian para los pasajeros. Tan sólo permite reemplazar los helicópteros que ya prestan un servicio equivalente. Pero, aunque el coste operativo por vuelo sea más bajo, el coste de adquisición de la aeronave es muy superior. El punto de equilibrio es delicado.