El demostrador hibdridoeléctrico con propulsión distribuida de Daher, Airbus y Safran, realiza su primer vuelo con las baterías a bordo.

Ecopulse, es un avión Daher modificado para contar con motopropulsión híbrida y distribuida

La aviación eléctrica y la híbrida vienen apareciendo con cierta frecuencia en estas páginas desde hace unos años. En este caso se trata de un prototipo fabricado por Airbus, Daher y Safran, sobre un avión turbohélice de Daher.

Cuenta con un turbohélice tradicional, más seis motores distribuidos a lo largo de la envergadura del ala y una batería de gran capacidad. La distribución de los motores en el ala recuerda a la que han usado en el Antonov 2, o en la Cub híbrida-eléctrica.

La propulsión distribuida tampoco es nueva en este blog. Permite soplar la capa límite del ala, aumentando la sustentación y haciendo más corta la carrera de despegue, como ya pudimos comprobar en el vídeo del An-2 despegando en poco más de 30m.

La instalación de hélices en el borde marginal nos hace sospechar que también desean ensayar a contrarrestar el torbellino de punta de ala, reduciendo así la resistencia aerodinámica. La nota de prensa nos deja ver otra utilidad que van a ensayar en esta aeronave, que es el control de la misma mediante el empuje asimétrico de los motores. Esto puede favorecer un menor consumo, pues no sería necesario «pisar pedal» para contrarrestar el par del motor, manteniendo así el estabilizador y el timón de dirección sin deflectar, reduciendo la resistencia aerodinámica del conjunto durante el vuelo. Adicionalmente, si permitiera un control efectivo de la aeronave podría, a su vez, permitir desarrollar superficies de control más pequeñas, reduciendo a su vez aún más la resistencia aerodinámica.

También va a permitir ensayar en sí el concepto de propulsión híbrida, aunque Airbus ya tiene experiencia en ello.

En este primer vuelo, el despegue se ha realizado con el motor turbohélice. Los motores eléctricos no se han encendido hasta encontrarse a una altitud de vuelo de seguridad, como es de esperar en estos primeros ensayos, donde se comienza probando el encendido y apagado de los motores, su alimentación y otros parámetros relacionados con la seguridad. En siguientes ensayos se espera que realicen los despegues con todos los motores en marcha.

Por lo pronto el avión ha realizado su primer vuelo, esperaremos impacientes los resutlados de la campaña de ensayos.

Detalle del ala, con la propulsión distribuida y las lanas que permiten observar el comportamiento del aire

Vamos con la nota de prensa

El demostrador EcoPulse realiza su primer vuelo con las baterías a bordo.

EcoPulse es un avión demostrador de propulsión híbrida distribuida desarrollado en colaboración por Airbus, Daher y Safran. Diseñado para aprender y perfeccionar los componentes tecnológicos de los sistemas de propulsión híbrido-eléctrica para aviones futuros, EcoPulse alcanzó un hito cuando el demostrador despegó en su primer vuelo de prueba.

Después de un par de años viajando regularmente entre Tarbes y Toulouse para supervisar el desarrollo de EcoPulse, el líder del proyecto, William Llobregat, se encontró de nuevo en el lugar en noviembre de 2023 con su equipo y los de Daher y Safran. ¿La ocasión? El primer vuelo de prueba de EcoPulse. «Este proyecto se lanzó en 2019», dice Llobregat, un arquitecto de propulsión de próxima generación. «Es realmente emocionante haber llegado a la etapa concreta del proyecto donde estamos probando en vuelo las tecnologías que hemos desarrollado».

El primer vuelo marca el comienzo de una campaña de pruebas de vuelo de ocho meses de los sistemas de propulsión híbrido distribuido y las tecnologías asociadas, dirigida por Daher. Un sistema de propulsión híbrido-eléctrico combina una batería de alta tensión con una turbomáquina equipada con un generador eléctrico, y el aspecto distribuido significa que hay múltiples «módulos» de propulsión distribuidos a lo largo de las alas.

La hibridación es un área de inversión importante para Airbus, ya que las estimaciones muestran que podría reducir la huella ambiental de una aeronave hasta en un 5%. El primer vuelo de EcoPulse, con el sistema de propulsión híbrido funcional a bordo, marca así un paso importante y concreto en el avance de la hoja de ruta de electrificación de la compañía.

Un hito para el vuelo híbrido-eléctrico

EcoPulse despegó para su vuelo de prueba inaugural desde el pintoresco Aeropuerto de Tarbes-Lourdes-Pyrénées, ubicado al pie de la cordillera de los Pirineos en el suroeste de Francia. Dos pilotos de ensayos de Daher estaban a bordo del demostrador, un avión turbohélice modificado Daher TBM 900. Mientras el despegue y el aterrizaje utilizaron el motor de propulsión tradicional, el sistema de propulsión híbrida se activó a altitud de crucero, donde los pilotos pasaron alrededor de 20 minutos realizando secuencias de pruebas en la batería mientras esta alimentaba el vuelo.

Todos los aspectos de los diferentes sistemas, desde la forma en que la aeronave responde hasta la forma en que se utilizan las fuentes de energía, fueron previamente simulados digitalmente y probados por los pilotos en tierra. Estos datos teóricos ahora pueden compararse con los datos reales de las pruebas de vuelo para ayudar a los equipos a mejorar y perfeccionar el simulador y mejorar el rendimiento de los diferentes componentes tecnológicos innovadores.

¿Qué componentes tecnológicos, podrías preguntar? Airbus, Daher y Safran dividieron las responsabilidades de desarrollar las diferentes tecnologías de EcoPulse en base a sus competencias complementarias. Las contribuciones de Airbus al demostrador son el desarrollo de la batería de alta densidad de energía que alimenta los propulsores; la integración aerodinámica y acústica del sistema de propulsión distribuido; y el desarrollo de un sistema informático de control de vuelo.

«Los demostradores tecnológicos como EcoPulse desempeñan un papel clave en el avance de la hoja de ruta de descarbonización de nuestra industria», dice Llobregat. «Los demostradores en sí no están destinados a entrar nunca en servicio, pero nos permiten evaluar, perfeccionar y validar tecnologías individuales que luego se pueden integrar en aviones futuros».

Airbus aporta su experiencia a componentes clave de EcoPulse.

De las tres principales contribuciones tecnológicas de Airbus, el sistema de batería puede ser el más innovador. Como las baterías de automóviles para vehículos eléctricos son demasiado pesadas y voluminosas para su uso en la industria aeroespacial, y las baterías ya utilizadas en aviones suelen ser de baja tensión, Airbus Defence and Space tuvo que diseñar a medida la batería de alta tensión de EcoPulse.

«El sistema de batería puede alcanzar 800 voltios de corriente continua y entregar hasta 350 kilovatios de potencia», dice Llobregat. «Estamos siendo pioneros con nuevos niveles de tensión para la industria aeroespacial y esperamos integrar esta tecnología en aviones comerciales en el futuro».

La batería es lo suficientemente potente como para impulsar hasta seis propulsores eléctricos.

Airbus también modificó la forma del avión para evaluar el impacto en el rendimiento de tener un sistema de propulsión distribuida.

«Tenemos fuentes de propulsión separadas y más pequeñas distribuidas en el ala. Esto significa que teóricamente podrías aumentar la fuerza de empuje solo en los motores exteriores o solo en los centrales. Luego podemos evaluar cómo estas diferencias afectan el rendimiento de vuelo, lo cual es información muy valiosa», explica Llobregat. «Utilizar el empuje asimétrico para controlar el avión es una tecnología totalmente nueva que solo es posible probar porque estamos utilizando un sistema eléctrico que tiene una mejor respuesta dinámica que los motores de combustible a reacción tradicionales».

La creación de un sistema informático de control de vuelo también fue responsabilidad de Airbus. El software vincula todos los sistemas de control de vuelo y los conecta a los motores eléctricos, monitorizando la propulsión.

Optimiza el empuje y minimiza el efecto de la resistencia en las puntas de las alas, y también tiene en cuenta una palanca de control adicional en la cabina, así como un botón de apagado de emergencia que devuelve inmediatamente el demostrador a un avión normal con un motor convencional.

El primer vuelo de prueba del demostrador EcoPulse con el sistema de batería a bordo Sentando las bases para el vuelo con batería

Las pruebas de vuelo del demostrador durarán hasta mediados de 2024 como máximo y comprenderán hasta 30 vuelos de prueba. ¿El objetivo final de los equipos involucrados? Que cada empresa logre sus respectivos objetivos al finalizar el proyecto. «Esta asociación entre Airbus, Daher y Safran, tres empresas francesas, funcionó tan bien porque se basó en nuestra ambición común de allanar el camino hacia la descarbonización de la industria aeroespacial europea», dice Llobregat. Como uno de los principales objetivos del proyecto de Airbus era probar una nueva configuración de batería de alta tensión en vuelo, la campaña de pruebas es el emocionante resultado de cuatro años de trabajo.

Sin embargo, el desarrollo del sistema de batería se remonta aún más atrás, con la batería EcoPulse beneficiándose de varios años de investigación y prototipado previos en Airbus y Airbus Helicopters.

Las pruebas de vuelo de este sistema de batería de última generación, ligero y compacto, con alta tensión y densidad de energía, proporcionarán datos valiosos para respaldar el objetivo de Airbus de aplicar sistemas de propulsión híbrida en futuros aviones o helicópteros.

¡Si bien EcoPulse puede ser una aeronave pequeña, su impacto potencial en la industria de la aviación es enorme!

Airbus sigue mejorando y ensayando su kit para convertir el A400M en un avión de lucha antiincendios

A400M liberando retardante en la D17 de Uceda

En julio nos hacíamos eco (y publicábamos también el vídeo) de los ensayos realizados por Airbus con su A400M en el norte de Guadalajara, concretamente en Uceda, equipado con un sistema paletizado que permitía convertirlo en un avión de lucha antiincendios. En agosto, además, lo comparábamos con el sistema MAFFS utilizado por los Hércules y adaptado también al C-390. Hoy sabemos que Airbus continúa mejorando y ensayando el sistema y, por lo que se ve en las fotos, también en Uceda.

El A400M y su «chassing plane» en los ensayos anteriores

Si comparamos la imagen de los últimos ensayos y la comparamos con la imagen de la nota de prensa del verano, podemos comprobar que el líquido, en esta ocasión, se separa del fuselaje del avión, evitando acumulación de material potencialmente corrosivo en la estructura. Esta fue una de las principales pegas que encontramos a este sistema, similar al MAFFS I, en su día. La salida de líquido se producía por el portalón y bañaba toda la cola, haciendo casi obligatoria la limpieza de la aeronave tras cada uso, para evitar inicios de corrosión. En las nuevas imágenes, aparentemente, han logrado solucionar este problema. La ventaja de este sistema es que, como el MAFFS I y al contrario que el MAFFS II, no necesita ningún tipo de modificación estructural en el avión.

La apuesta de Airbus es clara. Europa está cada vez más preocupada por los grandes incendios forestales, que nos visitan cada vez más a menudo, con más virulencia, y durante más tiempo. De hecho Airbus no es la única empresa interesada en el desarrollo de grandes aviones cisterna contra el fuego, no podemos olvidar a Keppler y su apuesta por el A-330. Y, aunque como hemos dicho en las entrevistas con Manuel Gálvez, ex piloto del 43, y Jose Luis García Gallego, piloto antiincendios en helicópteros, lo ideal es el mantenimiento preventivo antes que el correctivo, no está de más equiparse con aviones antiincendios.

Por lo que hemos hablado con ambos pilotos, expertos en la materia, estas aeronaves pueden crear cortafuegos, pero no serían aptas para un ataque directo del fuego, y mucho menos para combatirlo en valles cerrados o con grandes gradientes de altitud, como pudiera ser el caso de Canarias.

En España, y en general en Europa, aunque en esto de la lucha antiincendios forestales podemos presumir de estar muy a la cabeza y por delante del resto de los países europeos, no se ha utilizado habitualmente este tipo de aeronaves de gran tamaño, más habituales en países como Canadá, Estados Unidos o Australia. Estamos acostumbrados a otras tácticas anti-incendios, me remito una vez más a la entrevista con Manuel de Gálvez, y por eso no se han empleado este tipo de aeronaves. Si bien el aumento de la criticidad de los incendios, de su tamaño y de su voracidad, bien podrían justificar su inclusión en las campañas antiincendios, aunque habría que desarrollar desde cero una doctrina para su utilización y encajarlos dentro de las formaciones que ya vuelan, entender dónde y cómo crear esos cortafuegos, y establecer cómo deben coordinarse con los medios más pequeños, más maniobreros y más aptos para atacar directamente el frente de las llamas.

La parte positiva es que al ser un sistema paletizado, se puede instalar con facilidad en todos los A400M que están volando con las fuerzas aéreas europeas. Además el A400M tiene capacidad STOL y de aterrizar en pistas no preparadas, lo que facilitaría su dispersión por las pistas forestales ya existentes. Al menos en cuanto a longitud de pista se refiere, habría que hacer un estudio de a cuántas pistas queda limitado su uso, realmente, debido a la envergadura. La parte negativa es que no puede cargar el líquido en las cercanía del incendio, añadiendo al tiempo entre cada dos descargas sucesivas los diez minutos de repostaje de agua con retardante y los vuelos de ida y vuelta del incendio a la base. Otro punto desfavorable es que los pilotos del A400M son pilotos de transporte militar, no de lucha antiincendios. Y los pilotos antiincendios saben volar el Canadair 415/215T, no el A400M. Así que por mucho que el aparato se pueda configurar en poco tiempo, los pilotos necesitarán un tiempo de entrenamiento y adaptación.

No obstante, y viendo la que se nos viene encima con los incendios forestales, siempre es bien recibido un nuevo aparato. Habrá que ver cómo se definen las doctrinas antiincendios y cómo se encaja un avión de semejante tamaño en ellas, y cómo se coordina con los helicópteros y los anfibios que ya operan en los incendios. Estaremos espectantes y a la espera de nuevas noticias, y nuevas charlas con nuestros amigos los pilotos «apagafuegos».

Vamos con la nota de prensa:

Airbus actualiza el kit de prototipo de extinción de incendios del A400M.

Airbus Defence and Space ha llevado a cabo una nueva campaña de pruebas de vuelo del kit de extinción de incendios Roll-on/Roll-off del A400M, soltando 20.000 litros de retardante y creando líneas de alta concentración de más de 400 metros de longitud.

Durante un período de dos semanas, el A400M llevó a cabo una campaña de pruebas en tierra y en vuelo en el suroeste y centro de España, que incluyó seis descargas, tres de las cuales utilizaron retardante de color rojo y tres utilizaron agua.

Hemos probado una nueva versión del kit, mejorando la eficiencia de la descarga y reduciendo el tiempo de descarga en más del 30% en comparación con el año pasado, al mismo tiempo que se combina con un despliegue rápido y una instalación sencilla en la aeronave A400M. Seguimos siendo pioneros en nuevas soluciones y capacidades para nuestra flota de A400M, en este caso protegiendo a las poblaciones y al medio ambiente natural de los incendios.

Jean-Brice Dumont, Jefe de Sistemas Aéreos Militares en Airbus Defence and Space

Una solución fácil de instalar

Este kit de instalación/desinstalación no requiere ninguna modificación en la aeronave y, por lo tanto, es intercambiable para cualquier aeronave de la flota A400M. El agua o el retardante se almacenan en un tanque en la bodega de carga de la aeronave y, mediante el uso de una palanca mecánica, se abre una puerta para permitir que el líquido fluya fuera de la aeronave por gravedad a través de un tubo de descarga. El diseño actual del prototipo es capaz de soltar 20.000 litros en una sola descarga.

Los tanques se pueden llenar en menos de 10 minutos utilizando bombas de alta presión estándar en tierra. El A400M se caracteriza por su capacidad para despegar y aterrizar en pistas cortas y sin pavimentar, y en una amplia gama de bases y campos de aviación.

Durante la campaña, el 43º Escuadrón de Extinción de Incendios de la Fuerza Aérea Española ha participado como asesores técnicos y asegurando que esta capacidad en el A400M tiene un valor operativo para cualquier posible operador.

En julio de 2022, Airbus probó por primera vez un kit demostrador de extinción de incendios removible en el A400M. La compañía concluyó que el kit de extinción de incendios del A400M ofrece capacidades adicionales no disponibles en el mercado gracias a su alta capacidad de descarga, alta maniobrabilidad con los últimos estándares de seguridad, operación de día y noche y la capacidad de convertir cualquier A400M regular en cualquier flota en una aeronave de extinción de incendios en muy poco tiempo.

Airbus controla un helicóptero desde una «tablet», como si de un pequeño drone se tratara

El vuelo del helicóptero es de los más complejos y de los que más se tarda en aprender, en comparación con las aeronaves de ala fija, o del autogiro. Es un vuelo exigente, requiere coordinación… y Airbus ha ensayado lo que ha denominado en su nota de prensa una «nueva interfaz simplificada humano-máquina».

Básicamente viene a ser algo así como manejar una aeronave tripulada igual que se maneja una aeronave no tripulada, como las que se pueden manejar desde un teléfono móvil o una tablet. Algo como lo que hemos descrito en algunas ocasiones cuando hemos hablado de las cabinas con un solo tripulante, que pasaba por integrar este tipo de mandos en las aeronaves. Y que, sin duda, Airbus planea integrar en sus aeronaves de movilidad aérea urbana CityAirbus. Y claro, por qué no, entendemos que en todas las demás, como por ejemplo, cockpits con un solo piloto, como el que prometía Faury para el A350.

El sistema ha sido capaz de operar de forma casi autónoma la aeronave, e incorpora tanto un control de seguridad que permite al piloto retomar el mando de la aeronave, como un sistema que detecta obstáculos y permite calcular rutas alternativas para evitar la colisión. Esto es, incorpora un sistema de «ver y evitar», o sense and avoid, que tanto hemos dicho que será imprescindible en caso de querer integrar drones y/o aeronaves la llamada movilidad aérea avanzada o movilidad aérea urbana en el espacio aéreo con otras aeronaves tripuladas.

Previamente, hace un mes, Airbus había volado un sistema simplificado, destinado según la nota de prensa a su CityAirbus, que pasaba de controlar el vuelo del helicóptero con dos palancas (cíclico y colectivo) más pedales a una sola palanca, con lo que todos los mandos quedaban centralizados en uno sólo, que distribuye a cada mando las órdenes necesarias, pero introducidas a través de una única palanca.

Este tipo de sistemas busca maximizar la seguridad en vuelo, y reducir los riesgos, mejorando la seguridad, cosa que como ingeniero me fascina. Como piloto, la sensación es que todo esto hará el volar mucho más aburido…

Vamos con las notas de prensa:

Al alcance de tus dedos: Airbus vuela un helicóptero completamente automatizado con una tableta.

Airbus ha probado con éxito una nueva interfaz hombre-máquina (HMI) simplificada junto con funciones autónomas avanzadas a través de un proyecto llamado Vertex. Estas tecnologías, desarrolladas por Airbus UpNext, están controladas por una tableta con pantalla táctil y tienen como objetivo simplificar la preparación y gestión de misiones, reducir la carga de trabajo de los pilotos de helicópteros y aumentar aún más la seguridad.

El Airbus Helicopters’ FlightLab voló completamente automatizado desde el carreteo: carrteo, despegue, crucero, aproximación y aterrizaje fueron realizados mediante comandos en la tablet, durante un vuelo de prueba de una hora siguiendo una ruta predefinida. Durante este vuelo, el piloto supervisó el sistema que es capaz de detectar obstáculos imprevistos y recalcular automáticamente una ruta de vuelo segura. Si es necesario, el piloto puede anular fácilmente los controles a través de la tableta y reanudar la misión posteriormente. El período de prueba de vuelo se llevó a cabo desde el 27 de octubre hasta el 22 de noviembre en las instalaciones de Airbus Helicopters en Marignane, Francia.

Esta exitosa demostración de un vuelo completamente autónomo desde el despegue hasta el aterrizaje es un gran paso hacia la reducción de la carga de trabajo de los pilotos y la interfaz hombre-máquina simplificada que el equipo de Movilidad Urbana Aérea de Airbus tiene la intención de implementar en CityAirbus NextGen. También podría tener aplicaciones inmediatas para helicópteros en vuelos a baja altura cerca de obstáculos gracias a la información proporcionada por los lidars a bordo.

Michael Augello, CEO de Airbus UpNext

Airbus Helicopters continuará desarrollando las diferentes tecnologías que componen Vertex: sensores y algoritmos basados en visión para la conciencia situacional y detección de obstáculos; fly-by-wire para un piloto automático mejorado; y una interfaz avanzada hombre-máquina, en forma de pantalla táctil y visor montado en la cabeza, para el monitoreo y control en vuelo.

Airbus Helicopters pionera en volar con mandos amigables para eVTOLs.

El FlightLab de Airbus Helicopters ha probado con éxito un sistema de control de vuelo eléctrico en preparación de una nueva interfaz hombre-máquina (HMI) que equipará CityAirbus NextGen, el prototipo de eVTOL de Airbus. Este hito representa un paso importante hacia una nueva generación de aeronaves de movilidad aérea urbana eléctrica.

Los controles del piloto se han simplificado considerablemente gracias a la asistencia de pilotaje mejorada proporcionada por el sistema de control de vuelo eléctrico. Por primera vez en la industria de los helicópteros, una única palanca de control reemplaza a los tres controles convencionales del piloto (cíclico, pedales, colectivo) y es capaz de controlar todos los ejes de la aeronave. Utilizando la palanca única, el piloto puede realizar todas las maniobras: despegue y aterrizaje, ascenso, descenso, aceleración, desaceleración, giro y aproximación.

La palanca única ocupa menos espacio, ofrece una mejor visibilidad al piloto y se combina con una HMI revisada que utiliza pantallas simples, proporcionando una selección de información específicamente adaptada a los eVTOL.

Desde el principio, diseñamos este sistema teniendo en cuenta todos los parámetros de certificación, ya que será un gran avance en la validación del diseño de nuestro eVTOL de movilidad aérea urbana, CityAirbus NextGen. La ventaja de un sistema de control de vuelo eléctrico es enorme, especialmente cuando se trata de reducir la carga de trabajo del piloto y, en última instancia, mejorar la seguridad de la misión. También es un gran ejemplo de cómo nuestros demostradores se utilizan para madurar los bloques tecnológicos necesarios para preparar el futuro del vuelo vertical.

Tomasz Krysinski, Jefe de Investigación e Innovación en Airbus Helicopters

Después del éxito de la campaña de pruebas de vuelo, Airbus Helicopters está trabajando en finalizar los detalles de este nuevo sistema antes de realizar nuevas pruebas en el marco de Vertex, un proyecto realizado en colaboración con Airbus UpNext que avanzará aún más en la autonomía al gestionar la navegación y simplificar la preparación de misiones.

Airbus ha sido uno de los pioneros en explorar cómo la propulsión eléctrica puede ayudar a impulsar el desarrollo de nuevos tipos de vehículos aéreos. En septiembre de 2021, la compañía presentó su prototipo de eVTOL totalmente eléctrico, CityAirbus NextGen. Airbus está desarrollando una solución avanzada de movilidad aérea con eVTOLs, no solo para ofrecer un nuevo servicio de movilidad, sino también como un paso importante en su misión de reducir las emisiones en la aviación en toda su gama de productos.

Airbus ha realizado su primer vuelo con un motor de hidrógeno

Airbus, asociada con Perlan Project -a los que conocimos hace unos años cuando nos mandaban sus notas de prensa-, y a través de su filial Airbus UpNext, ha realizado en Nevada su primer vuelo de un avión con motor de hidrógeno (casi 15 años después del primer vuelo con hidrógeno de Boeing en Cuatro Vientos).

El fin del avión es investigar el efecto de las estelas de condensación producidas por los motores alimentados por hidrógeno. ¿Por qué? La aviación contribuye de dos formas al calentamiento global. Una es la emisión directa de gases, y la otra es la formación de nubes con sus estelas de condensación, que también contribuyen con el calentamiento global.

Para combatir lo primero, Airbus está apostando fuertemente por el hidrógeno. Pero lo segundo, hay que estudiarlo aún. ¿Cómo afectan las estelas de condensación de los motores de hidrógeno?. La combustión del hidrógeno da como resultado tan solo agua, por lo que es una combustión mucho más limpia y menos contaminante. Pero emite mucha más agua a la atmósfera, en forma de vapor. Y se desconoce el comportamiento de esas estelas de condensación. De ahí estos ensayos que acaba de iniciar Airbus, con un par de veleros modificados con pequeños turborreactores, uno alimentado con keroseno y el otro con hidrógeno. La idea es remolcar a los veleros hasta cierta altitud, donde se producirá el encendido de los motores, y estudiar las estelas de ambos motores, comparándolas.

En cuanto al hidrógeno, ya sabéis que defendemos que, frente a la aviación elétrica, es el verdadero futuro de la aviación. Ya se ha demostrado que es seguro, y además es técnicamente viable.

El primer avión de hidrógeno voló en los años cincuenta. El primer avión de aerolínea a hidrógeno en los 80. El primero en ser alimentado por una pila de hidrógeno voló hace casi 14 años en Cuatro Vientos. Vamos, que su uso como combustible está más que probado y se sabe que es técnicamente viable, siendo la logística (producción, transporte, almacenamiento, suministro…) el principal limitante de esta tecnología.

Nota de prensa Airbus:

El Blue Condor, persiguiendo contrails, realiza el primer vuelo completo propulsado por hidrógeno de Airbus.

El planeador Blue Condor, modificado por Airbus UpNext, diseñado para estudiar la estela de condensación (condensation-trail o contrail) que dejarán los motores alimentados hidrógeno, realizó su primer vuelo propulsado por hidrógeno sobre Nevada, Estados Unidos, el 8 de noviembre de 2023. El vuelo, a su vez, ha sido el primero que ha realizado Airbus utilizando exclusivamente hidrógeno como combustible, y ha dado inicio a una campaña de ensayos que culminará en una misión de medición de estelas de condensación a principios de 2024.

El hidrógeno ofrece a la aviación un camino hacia operaciones sin emisiones de carbono, sin embargo, su combustión produce estelas de condensación, al igual que el combustible convencional de los aviones. Sin embargo, las estelas de hidrógeno son diferentes. No contienen hollín ni óxidos de azufre, pero sí contienen óxidos de nitrógeno y una gran cantidad de vapor de agua: hasta 2.5 veces más que las estelas de keroseno. Ambos se consideran emisiones que impactan en el clima, y como tal, la industria de la aviación tiene la responsabilidad de abordarlos.

Por lo tanto, como parte del proyecto ZEROe, Airbus se compromete a estudiar la composición de estos contrails de hidrógeno, poco conocidos, y comprender su formación e impacto.

Utilizando un planeador Arcus-J modificado, el proyecto Blue Condor de Airbus UpNext llevará un pequeño motor a reacción alimentado por hidrógeno a una altitud de hasta 30,000 pies y comparará sus emisiones con las de un motor de keroseno de tamaño similar instalado una segunda aeronave. Ambos planeadores son operados por el Proyecto Perlan. El motor de hidrógeno fue ensamblado por la empresa alemana Aero Design Works.


Blue Condor realiza su primer vuelo completo propulsado por hidrógeno y da inicio a la campaña de seguimiento de contrails

Blue Condor ha entrado ahora en su fase de ensayos en vuelo. El vuelo del 8 de noviembre duró aproximadamente 30 minutos y su objetivo era aumentar la potencia del motor de hidrógeno a 7,000 pies, mientras se estabilizaba la aeronave a diferentes velocidades. Desde entonces, se han realizado otros dos vuelos, realizando pruebas que incluyen un arranque del motor a 10,000 pies.

El equipo de Blue Condor planea llevar a cabo una primera operación de estudio de contrails durante la ventana de clima frío de Nevada a principios del próximo año. Luego, el Arcus-J será remolcado a la altitud de prueba por una aeronave Grob Egrett instrumentada por el laboratorio aeroespacial alemán DLR. Esta aeronave de «persecución» seguirá detrás, utilizando sensores para recopilar y analizar datos de contrails y de la atmósfera. El vuelo promete ser un gran paso para comprender aún más el impacto climático del hidrógeno y, en última instancia, para alcanzar el objetivo de Airbus de poner en servicio el proyecto ZEROe en 2035.

eXtra Performance Wing, el ala biomimética de Airbus, despega por primera vez

Airbus comenzó a ensayar un concepto de ala biomimética con el Albatross One, en un avión a escala, y la siguiente fase lógica era ensayar soluciones en un avión real, primero con ensayos en túnel de viento, y ahora en una Cessna Citation VII modificada.

Según la nota de prensa en la que Airbus presentaba este proyecto… Similar a cómo un águila planea, adaptando la forma, envergadura y superficie de sus alas y plumas, este demostrador permite aumentar la eficiencia del vuelo. Se investigarán, integrando en el ala, varios elementos tecnológicos para permitir el control activo del ala, incluyendo: sensores de ráfagas, spoilers o placas que se desvían rápidamente perpendicular al flujo de aire, bordes de fuga multifuncionales que cambian dinámicamente la superficie del ala en vuelo y una bisagra semi-aeroelástica.

El avión ha despegado y aterrizado hoy en el aeropuerto de Tolouse, y ha realizado un vuelo de una hora y media. Puede verse en Flight Radar.

El demostrador lo está desarrollando Airbus UpNext, una subsidiaria completamente propiedad de Airbus creada para acelerar el desarrollo de tecnologías futuras mediante la construcción rápida y a gran escala de demostradores, con el fin de evaluar, madurar y validar posibles nuevos productos y servicios que engloben avances tecnológicos radicales.

Fuente: @Airbus