La escasez de materiales considerados estratégicos llevó a desarrollar aeronaves en otros materiales poco convencionales. De sobra es conocido el ejemplo del De Havilland Mosquito. O del Spitfire en material compuesto del año 41. Y este era el caso de esta belleza de caoba contrachapada y resina plástica.
La técnica era ya conocida antes de la Primera Guerra Mundial, y fue utilizada en el Deperdussin Monococque. Consistía en apilar las hojas de contrachapado de madera en distintos ángulos y aglomerarlas con una matriz de resina o plástico, como actualmente se hace con la fibra de carbono o de vidrio.
Construido con chapas de caoba impregnadas con vinilo y fenol para evitar utilizar materiales estratégicos como el aluminio, el Langley 2-4, se ha descrito como Langley Monoplane o Langley Twin.
Era un avión utilitario bimotor construido en los Estados Unidos y volado por primera vez en 1940. Nombrado en honor a Samuel Pierpont Langley, el avión fue diseñado por Arthur Draper y Martin Jensen.
Su diseño era convencional: un monoplano voladizo de ala baja con colas gemelas y tren de aterrizaje con ruedas de cola.
En el proceso de fabricación del Langley, las láminas de madera contrachapada no se prefabrican antes de ensamblar, ni se doblan ni se unen a largueros o mamparos, como ocurre con otros tipos de construcción, sino que se hacía con finas tiras de chapa tratada con plástico en una unidad integral que formaba una estructura monocasco. Sus espesores variaban de 1/64″ a 1/8″.
El fuselaje, las alas, las superficies de control y los carenados del motor se unen sin el uso de remaches, pernos o tornillos y tuercas. En su lugar se utilizan piezas que se insertan en los troqueles previstos en la estructura para su unión, y se encolan con calor y presión, utilizando técnicas de apilado y de curado similares a las actuales técnicas manuales para fibra de carbono, aunque a temperaturas mucho más bajas, unos 60º.
La estructura resultante es simple, fácil de inspeccionar y económica de mantener y reparar. Cada capó del motor, la punta del ala y la nariz del fuselaje se pueden quitar como una unidad.
Los capós y cortafuegos están moldeados con un revestimiento integral de asbesto.
La madera contrachapada de plástico es resistente a la corrosión por ácidos, álcalis, agua salada y hongos.
Se hicieron dos prototipos, el 2-4-65, que voló en 1940 y el 2-4-90 que voló en 1941.
El primero de ellos (NX29099), como indica el -65, motores de 65 hp, y el otro (29-90NC/N51706) con motores de 90 hp.
La Marina de los Estados Unidos compró la segunda máquina y la evaluó como XNL-1 (39056), pero no ordenó la compra del modelo.
John Pierce y Hurley Boehler tenían un fuselaje Stinson 108 en su hangar sin alas, por lo que decidieron comprar el Langley y, tras el accidente, sus alas, góndolas de motor y tren de aterrizaje principal se acoplaron a un fuselaje Stinson 108 para crear un único avión de fabricación casera único en su tipo llamado Pierce ArrowN6622A.
Una vez que Estados Unidos entró en guerra, se supo que las resinas necesarias para la construcción eran mucho más escasas que el metal que se habría necesitado para producir un avión por medios convencionales, y el proyecto se abandonó.
Hoy presentamos el segundo artículo para Sandglass Patrol de nuestro amigo Martín García García. ¡Esperemos que os guste!
El 14 de junio de 1919, dos aviadores británicos, John Alcock y Arthur Whitten Brown, realizaron el primer vuelo trasatlántico sin escalas de la historia, cruzando el océano Atlántico desde Terranova hasta Irlanda en poco más de 16 horas. Fue una hazaña extraordinaria que demostró el potencial de la aviación para conectar continentes y acortar distancias.
En este artículo, repasaremos los antecedentes, los preparativos, el desarrollo y las consecuencias de este histórico vuelo, que marcó un hito en la historia de la aeronáutica y abrió el camino para futuros desafíos y exploraciones.
Antecedentes
La idea de cruzar el Atlántico en avión no era nueva. Desde principios del siglo XX, varios pioneros de la aviación habían intentado o planeado realizar esta proeza, pero se habían encontrado con numerosas dificultades técnicas, meteorológicas y logísticas, ¡incluso de falta de desarrollo de ayudas a la navegación y de instrumentos!. La Primera Guerra Mundial supuso un impulso para el desarrollo de la tecnología aeronáutica, pero también un freno para las aspiraciones civiles.
En 1913, el periódico británico Daily Mail ofreció un premio de 10.000 libras esterlinas al primer piloto que lograra cruzar el Atlántico en avión en menos de 72 horas. El premio quedó desierto durante la guerra, pero se reactivó en 1918, cuando el conflicto terminó y los aviones habían mejorado notablemente su rendimiento.
Varios equipos se lanzaron a la competencia, pero ninguno lo consiguió antes que Alcock y Brown. El primero en intentarlo fue el francés René Fonck(el as francés de la Primera Guerra Mundial, de la famosa escuadrilla de las Cigüeñas) , que despegó de Nueva York el 21 de septiembre de 1918 con un avión Sikorsky S-35 cargado de combustible y tres pasajeros. Sin embargo, el aparato era demasiado pesado y se estrelló al poco de despegar, causando la muerte de dos ocupantes.
El del estadounidense Albert Read, que salió de Rockaway (Nueva York) el 8 de mayo de 1919 con un hidroavión Curtiss NC-4 también lo intentó. Su ruta incluía escalas en Nueva Escocia, Terranova, Azores, Lisboa y Plymouth. A pesar de los problemas mecánicos y las condiciones meteorológicas adversas, logró completar el viaje el 31 de mayo de 1919, convirtiéndose en el primero en cruzar el Atlántico en avión, pero con escalas.
Alcock y Brown, el triunfo de los ex-prisioneros de guerra
John Alcock (1892-1919) era un piloto experimentado que había servido en la Royal Air Force durante la guerra. Había sido derribado y capturado por los alemanes en 1917, pero logró escapar al año siguiente. Tras el armisticio, se interesó por el premio del Daily Mail y se asoció con la empresa Vickers Limited, que le proporcionó un avión modificado para la ocasión: un Vickers Vimy.
Arthur Brown (1886-1948) era un ingeniero naval que había trabajado como observador y navegante aéreo durante la guerra. Había sido derribado dos veces y también había sido prisionero de los alemanes. Tras su liberación, se dedicó a estudiar las técnicas de navegación astronómica aplicadas a la aviación. Se unió al proyecto de Alcock como copiloto y navegante.
El Vickers Vimy era un bombardero pesado bimotor que había sido diseñado para la Primera Guerra Mundial, pero que no llegó a entrar en combate. Tenía una envergadura de 20 metros, una longitud de 13 metros y una altura de 4 metros. Podía alcanzar una velocidad máxima de 166 km/h y una altitud de 4.300 metros. Tenía capacidad para cuatro tripulantes y podía transportar hasta 1.000 kg de bombas.
Para adaptarlo al vuelo trasatlántico, se le hicieron varias modificaciones, como reforzar el fuselaje, ampliar el depósito de combustible, instalar un sistema de calefacción y un radioteléfono, y eliminar las ametralladoras y la bahía de bombas. El peso total del avión era de 6.000 kg, de los cuales 3.600 kg eran de combustible.
Alcock y Brown eligieron como punto de partida la localidad de St. John’s, en Terranova, que era el lugar más cercano a Europa desde el continente americano. Allí se encontraron con otros competidores, como el británico Harry Hawker y el australiano Harry Kauper, que también habían llegado con un avión Sopwith Atlantic. Sin embargo, su intento fracasó el 18 de mayo de 1919, cuando tuvieron que amerizar cerca de las Azores debido a una avería en el motor.
Alcock y Brown tuvieron que esperar varios días hasta que el clima les permitió despegar. Mientras tanto, prepararon el avión y estudiaron las rutas posibles. Decidieron volar hacia el este, aprovechando los vientos favorables, y seguir una latitud constante de 52 grados norte. Su destino era Irlanda, que era la primera tierra firme que encontrarían en su camino.
Y por fin, el despegue
El 14 de junio de 1919, a las 13:45 hora local (16:15 GMT), Alcock y Brown despegaron del campo de Lester’s Field, en St. John’s, con su Vickers Vimy cargado hasta los topes de combustible. El despegue fue difícil, ya que el avión apenas tenía margen para elevarse sobre los árboles y los cables telegráficos. Además, el cielo estaba nublado y la visibilidad era escasa.
Durante las primeras horas del vuelo, Alcock y Brown tuvieron que enfrentarse a varios problemas: la brújula se averió, el radioteléfono dejó de funcionar, el parabrisas se empañó y se congeló, además de que el colector de escape del motor derecho se rompió, generando un ruido insoportable e imposibilitando que ambos aviadores pudieran hablar entre ellos. A pesar de todo, lograron mantener el rumbo y la altitud, guiándose por el sol cuando podían verlo o por la navegación astronómica cuando estaba oscuro.
La noche fue especialmente dura, ya que tuvieron que atravesar una tormenta, y tuvieron que perder altura para deshacer el hielo que se había formado sobre las alas. El avión no sólo se llenó de hielo, los instrumentos se volvieron inútiles. Alcock tuvo que pilotar a ciegas, confiando en su instinto y en la experiencia de Brown. Por suerte, lograron salir de la tormenta y recuperar el control del avión.
Al amanecer del 15 de junio de 1919, Alcock y Brown divisaron por fin la costa irlandesa. Habían volado unos 3.000 km en poco más de 16 horas, a una velocidad media de 185 km/h. Buscaron un lugar adecuado para aterrizar y vieron un campo verde que les pareció idóneo. Sin embargo, era un terreno blando.
El avión tocó tierra a las 8:40 hora local (7:40 GMT), pero se hundió en el barro y capotó, dañando el morro y las hélices. Afortunadamente, Alcock y Brown salieron ilesos del accidente y fueron recibidos los habitantes locales que les ayudaron a salir del avión.
Alcock y Brown habían logrado su objetivo: habían cruzado el Atlántico sin escalas por primera vez en la historia, batiendo todos los récords anteriores. Habían demostrado que era posible volar sobre el océano con un avión convencional y sin ayuda externa. Habían hecho historia.
Consecuencias
La noticia del vuelo de Alcock y Brown se difundió rápidamente por todo el mundo, causando admiración y asombro. Los dos aviadores fueron aclamados como héroes y recibieron numerosos honores y reconocimientos.
Después de recibir el premio de 10.000 libras de manos del futuro Primer Ministro Winston Churchill, los aviadores insistieron que los mecánicos de Vickers y Rolls-Royce que habían colaborado con ellos recibieran 2.000 libras
Unos días más tarde fueron nombrados Caballeros por el Rey Jorge V.
El tercer y cuarto tripulantes
Como curiosidad, no hicieron solos el viaje, había otros dos ocupantes en el avión, un pasajero llamado Twinkletoe y otro llamado Lucky Jim, unos gatos de peluche… que actualmente puede verse en el Museo de la RAF, en Cosford.
Y después…
En Octubre, Arthur Whitten-Brown se casó y se fue a Estados Unidos por su luna de Miel.
Desgraciadamente, John Alcock no pudo disfrutar de los reconocimientos otorgados mucho tiempo.
El 18 de Diciembre de 1919 despegó de Londres en pésimas condiciones meteorológicas en un vuelo de entrega de un nuevo Vickers Viking anfibio rumbo a París para la primera exposición aeronáutica tras la Gran Guerra.
Debido a la espesa niebla, tras cruzar el Canal de la Mancha se estrelló en un campo cerca del pueblo francés de Rouen donde fue rescatado por un granjero local, inconsciente y malherido.
Para cuando los médicos llegaron al lugar, Alcock había fallecido a casa de las graves lesiones.
Fue despedido con honores militares, Arthur W. Brown se enteró estando en San Francisco, reaccionando con un clásico: “La muerte de Alcock fue un sacrificio por toda la humanidad”
Lo bueno de tener amigos aerotrastornados es que cuando encuentran una rareza te la hacen llegar. Ese ha sido el caso de este inventor, Ramón Casanova Danés, cuyo motor a reacción del tipo pulso-reactor nos mandó el conocido autor de vídeos aeronáuticos Ernest Artigas «Tuckie».
El inventor
El inventor nació en Campdevánol, en el Pirineo. Estudió en los maristas de Blanes, pero su actividad laboral e inventiva la desarrolló en Barcelona.
Su padre era propietario de la forja Casanova, en Ripoll, que trabajaba, entre otros, para la Hispano Suiza. La fragua, que heredó, Fragua Casanova (anteriormente Fragua Grau y después Farga Font i Cia) sigue existiendo en la actualidad como empresa pública bajo el nombre Comforsa.
El barrio en el que vivía era conocido como La Hispano, por la compañía de motores Hispano-Suiza, y por sus inventos acabó recibiendo el mote de boig de l’Hispano, el loco de la Hispano.
Los motores a reacción más sencillos: el estato-reactor y el pulso-reactor
La idea de la propulsión a chorro no es nueva. Ya Herón de Alejandría hizo un juguete propulsado por gases saliendo a altas velocidades escapando por unas toberas. Si expulsamos un gas a alta velocidad en un sentido, nuestro vehículo se desplazará en el contrario.
La propulsión a chorro se emplea sobre todo en aviones de alta velocidad, o en cohetes, o en misiles… Y según la zona de vuelo y la velocidad que vaya a alcanzar el cacharro que lo monta, es más adecuado uno u otro motor…
El combustible es quemado, es decir, oxidado. El oxidante, puede ser el oxígeno procedente de la atmósfera, o bien puede ser proveniente de tanques especiales. Dentro de estos primeros encontramos el estato-reactor, el pulso-reactor, el turbo-reactor, el turbo-fan, los turbo-hélices y turbo-ejes. Los segundos, los componen los motores cohete.
El estato-reactor: Es el tipo de motor a reacción más simple de todos. Consiste en una tubería hueca. Se compone tres partes, la entrada es el difusor, que hace que baje la velocidad del aire e incremente su presión. En la parte central se encuentra la cámara de combustión, donde este aire a alta presión se mezcla con el combustible y donde se produce el encendido de la mezcla. La última parte es la tobera, en la que los gases pierden presión y ganan velocidad. Como norma general, se emplean lo que se denominan Toberas adaptadas, es decir, la presión de los gases es igual a la presión atmosférica. Para que este motor funcione, el vehículo debe encontrarse ya en movimiento, así que suelen ser aviones lanzados desde otros aviones, o bien misiles… Este motor no tiene utilidad fuera del mercado militar o aviones de investigación. Y el hecho de necesitar que el vehículo se encuentre ya en movimiento es una gran desventaja…
El pulso-reactor: Este sistema de propulsión es similar al anterior, y fue utilizado de forma operativa, en la V1. En el artículo sobre la V1 explico como funciona… y dice así
«El sistema de propulsión consistía en un motor del tipo llamado “pulso-reactor”, formado por un tubo de acero soldado, que componía el difusor, cámara de combustión y tobera, de 3.35m de longitud.
A la entrada del tubo (difusor) se encontraba una válvula de persiana y nueve inyectores de combustible. La velocidad de avance hacía que la válvula se abriera, entrando aire en la cámara de combustión, en la cual era inyectado el combustible. La presión inicial de la combustión hacia que la válvula de no-retorno se cerrara, así que el aire se expandía a través del tubo y era expulsado a gran velocidad a través de la tobera de salida, proporcionando la propulsión a chorro. La inercia de los gases escapando reducía la presión en la cámara de combustión, que era alimentada con butano, el cuál era encendido por una única bujía que se mantenía en funcionamiento hasta que la temperatura de las paredes de la cámara de combustible era suficientemente alta como para permitir el auto-encendido. La bajada de presión en la cámara de combustión provocaba la apertura de la válvula y se comenzaba a repetir el proceso. Esto se realizaba entre 40 y 45 veces por segundo (y daba a este motor su característico sonido, por el que los aliados la conocieron como la Buzz-bomb, impulsando a la bomba a una velocidad que variaba entre 624 y 656km/h. La riqueza de la mezcla aire-combustible se mantenía en la proporción adecuada con respecto a la velocidad de vuelo y la altitud (es decir, respecto a la densidad del aire) gracias a un mecanismo de compensación regulado por un tubo pitot.»
El invento
El invento él mismo lo describe en su patente Motor de explosión para toda clase de vehículos como un motor a reacción, pues impulsa al vehículo por la reacción que causa expulsar gases contenidos en un recipiente a mayor presión que la atmosférica.
Continúa la patente con la descripción del motor, básicamente como un cilindro con una o muchas entradas de aire y una o muchas salidas de aire. En las entradas de aire se encontrarían unas válvulas controladas por resortes que se abrirían o cerrarían de forma intermitente. El movimiento de avance causaría que se abrieran, hasta que se alcanzara el equilibrio de presiones y se cerrara, y entonces un sistema eléctrico dispararía en el momento adecuado la ignición de la mezcla de aire y combustible, procedente del carburador, que causaría que los gases salieran por el/los agujeros de salida y que proporcionarían el empuje necesario para mover el vehículo. Como se ve, la descripción concuerda perfectamente con el funcionamiento del pulso-reactor de la V-1 descrito más arriba.
Lo mejor, es que no se quedó en patente, sino que llegó a construir y probar un prototipo.
Como en la mayoría de las invenciones españolas adelantadas a su tiempo que hemos visto en este blog, no se aprovechó el posible impacto sobre la aviación, ya en pleno desarrollo, y el inventor ni pudo continuar sus investigaciones ni comercializar sus resultados, algo de lo que él mismo se quejaría al comprobar cómo un invento como el suyo funcionaba en las bombas volantes V-1.
Otros inventos…
Haciendo una búsqueda en la base de datos de patentes españolas, encontramos otras cinco patentes. Pero posiblemente su patente más conocida, la que todos hemos tenido en la mano y hemos manejado es… un abrelatas.
Si habéis llegado hasta aquí abajo leyendo, lo vuestro ya es de aerotrastorno profundo, así que suponemos que querréis leer la patente original. La primera página aparece incompleta, pero es como está en el único escaneado que hemos encontrado disponible. ¡Y ojala encontráramos la patente del dispositivo de lanzamiento y aterrizaje de dispositivos aéreos!
Hemos hablado de numerosas versiones raras de aviones. Pero esta yo creo que se lleva la palma. Aunque lo más extraño no sea el avión en sí, que no tiene ninguna forma peculiar, ni fuselaje doble, ni materiales exóticos… sino el uso para el que fue diseñado: Estos King Cobra fueron concebidos para que las tripulaciones de bombarderos hicieran blanco sobre ellos, disparándoles con munición de plástico. ¿Vosotros tendríais la sangre fría de permitir que cientos de artilleros os dispararan DE VERDAD, sólo para practicar su puntería? Los cazas, además de una tonelada de blindaje extra, llevaban en el cono de la hélice una luz que se encendía si el artillero había hecho blanco.
El avión, utilizado como blanco aéreo ¡con piloto real dentro!, generalmente se pintó de color naranja brillante para aumentar su visibilidad, aunque hay otros esquemas de pintura acebrados.
Se eliminó todo el armamento y el blingaje estándar, y se sustituyeron por una tonelada de blindaje adicional, que incorporaba sensores para detectar los impactos, que eran señalados con una luz en el cono de la hélice, por donde normalmente asomaba el cañón de 37mm. Esto le valió al avión el apodo no oficial de Pinball, nombre que terminó pintado en el morro de las primeras unidades modificadas. Esta variante recibió el nombre de RP-63.
Como las aeronaves iban tripuladas, se desarrolló munición frangible, hecha de baquelita y plomo, que debía desintegrarse al impactar contra el avión. Estos se conocían como «Cartucho, calibre .30, frangible, bola, M22».
La mejor manera de entrenar a un piloto es hacer que vuele un avión real hasta que sea competente, ¿verdad? Entonces, ¿por qué no entrenar a los artilleros aéreos permitiéndoles disparar a aviones reales? Y, de hecho, esto se haría posteriormente con aviones excedentes de la Segunda Guerra Mundial, como el Hellcat, convertidos en aviones a control remoto y pintados con el mismo color naranja. ¡Pero eso, a control remoto, no tripulados!. Esto hace que este programa sea uno de los más inusuales de las Fuerzas Aéreas del Ejército de EE. UU. (USAAF) en la Segunda Guerra Mundial.
El entrenamiento organizado de artilleros aéreos no comenzó hasta junio de 1941, cuando se estableció la primera escuela de artillería en Las Vagas, Nevada. Tradicionalmente, en todas las escuelas, el entrenamiento inicial del artillero se llevó a cabo utilizando dispositivos improvisados como escopetas montadas en la parte posterior de plataformas móviles, o entrenadores más sofisticados como los entrenadores Jam Handy y Waller. Algunos de los mejores y más realistas entrenamientos se realizaron usando cámaras ametralladora, pero había que esperar a revelar el carrete para evaluar al artillero.
Al mayor Cameron Fairchild se le atribuye la idea de desarrollar una bala no letal que podría dispararse en combates simulados pero sin derribar a los aviones blanco. Inicialmente, la idea era hacer las balas de vidrio, que se romperían y astillarían al golpear algo sólido. Para investigar formas de hacer una bala frangible, Fairchild contó con la ayuda de dos profesores de la Universidad de Duke, Paul Gross y Marcus Hobbs.
En el otoño de 1942, Fairchild presentó su munición al Comité de Investigación de la Defensa Nacional (NDRC, por sus siglas en inglés), donde la propuesta se topó directamente con una pared de ladrillos: el Departamento de Artillería del Ejército, responsable del desarrollo de todas las armas y municiones, que argumentaba que cualquier bala que fuera verdaderamente frágil no tendría las mismas características balísticas que la munición real. También les preocupaban los daños que pudieran recibir el avión blanco y su piloto si no se desarrollaba un blindaje adecuado. Finalmente la NDRC permitió que la investigación continuara pero con financiación y urgencia limitadas.
Con el apoyo de Bakelite Corporation y la Universidad de Duke, los profesores Gross y Hobbs desarrollaron una bala calibre .30 hecha de plomo y baquelita que podía dispararse con una ametralladora ligeramente modificada. En los ensayos, dispararon contra paneles de blindaje de aluminio y, a distancias tan cortas como 9m, no los dañaban. A principios de 1944, la munición frangible estaba lista para la producción con la designación T-44.
Con el problema de las municiones y las armas resuelto, el enfoque ahora se centró en encontrar un avión objetivo adecuado. Las pruebas iniciales se realizaron contra un Douglas A-20 blindado con planchas de aluminio. Sin embargo, un caza monomotor, preferiblemente con un motor refrigerado por líquido, se parecería más y simularía mejor los cazas alemanes, como el Messerschmitt 109. Y el el único caza estadounidense moderno de alto rendimiento que no tenía demanda para uso en combate por parte de las fuerzas estadounidenses era el P-63 Kingcobra de Bell, la mayoría de los cuales se proporcionaban a la Unión Soviética en virtud de la Ley de Préstamo y Arriendo.
En agosto de 1944, Bell modificó cinco aviones P-63A, quitó todo el armamento, reemplazó gran parte de los paneles de aluminio delanteros con paneles blindados más gruesos e instaló vidrio blindado en el parabrisas y las ventanas laterales. Además, se instalaron más de 100 micrófonos detrás de los paneles blindados y se conectaron con un contador de impactos en la cabina, además de con la luz roja de la que hemos hablado antes, situada en el cono de la hélice, por donde solía disparar el cañón Oldsmobile de 37mm.
Designados oficialmente como RP-63A, los cinco prototipos rápidamente se conocieron como «Pinballs» y a alguno se le pintó ese nombre en el morro. Después de resolver algunos problemas carga y centrado, y por tanto de estabilidad, se ecnargaron otros 95 RP-63A, seguidos de 200 RP-63C a principios de 1945, totalizando 300 blancos aéreos tripulados.
Con las primeras entregas de munición frangible producida en masa y aviones Pinball disponibles, finalmente se puso en marcha el entrenamiento a principios de 1945, y la USAAF realizó una demostración pública en marzo de ese año. En abril de 1945, el entrenamiento del programa Pinball estaba en marcha en las siete escuelas de artillería.
Durante el entrenamiento surgieron varios problemas, algunos ya predichos, como la diferente balística de los proyectiles. Por eso las miras de las armas tuvieron que ser recalibradas para la menor velocidad de boca y diferente trayectoria de las balas frangibles. Además las balas de plomo y baquelita hacían que el arma se encasquillara más de lo normal. Aunque la peor parte se la llevaban los pilotos. Pese al blindaje, cuando una bala de plástico hacía blanco en los radiadores, sólo quedaba saltar o aterrizar con el motor parado. Aunque el susto más grande se lo llevó un piloto que volvió con su parabrisas blindado de 38mm de espesor roto por una bala, ¡se había colado una bala real en la cinta de munición de entrenamiento!
Para proteger mejor al avión objetivo y al piloto, la última versión del Pinball, el RP-63G tenía un blindaje extendido para proteger las entradas de refrigeración del motor. Además, se agregaron más luces en el fuselaje y las alas para mejor indicación de cuando los artilleros hacían blanco. Solo se habían entregado 32 de estos Pinballs mejorados cuando se canceló la producción, tras la rendición de Japón.
Los aviones del programa Pinballs y balas frangibles se transfirió del Comando de Entrenamiento de la USAAF al nuevo Comando Aéreo Estratégico, donde continuaron ayudando a entrenar a los artilleros B-29. Sin embargo, en 1948, incluso SAC había abandonado el programa. Los aviones Pinball supervivientes fueron redesignados como QF-63, esto es, blancos aéreos no tripulados.
La Unidad Experimental de Aterrizaje a ciegas (BLEU) del Royal Aircraft Establishment (RAE) se formó en 1945, inicialmente en RAF Woodbridge pero se trasladó a RAF Martlesham Heath a principios de 1946. Era una unidad multidisciplinar, atrayendo personal de RAE Farnborough y el Establecimiento de Investigación de Telecomunicaciones, Malvern (TRE), encargado del desarrollo de aproximacióna ciegas y aterrizaje autónomo de aeronaves RAF, navales y civiles.
El sistema desarrollado por BLEU utilizó señales de radio como guía, un sistema de aterrizaje por instrumentos (ILS) anterior que definía la línea central de la pista, y un ángulo de aproximación de 3 grados a la pista. La guía en azimut durante la fase final de la aproximación se guiaba con un cable magnético, y se desarrolló un radioaltímetro controlar la y un sistema de gases automático para controlar la velocidad de la aeronave.
Los componentes del sistema se desarrollaron por separado en varios tipos de aviones y en 1950 todo el sistema de aterrizaje automático se había integrado en un avión Devon para realizar las demostraciones finales. En 1953, el desarrollo se extendió a un bombardero Canberra, aunque en ese momento, el aterrizaje automático tenía una prioridad baja para la RAF, y el esfuerzo se concentró en otros proyectos. Esto cambió cuando se emitió un requisito operativo para el aterrizaje automático para los “V-bomber” en 1954.
Tras los ensayos en el Canberra y el Devon, el sistema completo se instaló en un avión más grande, el Varsity. La primera aproximación y aterrizaje completamente automáticos en el Varsity se realizaron el 11 de noviembre de 1954. El desarrollo del sistema completo continuó en Martlesham Heath hasta principios de 1957 cuando BLEU se mudó a Thurleigh ( RAE Bedford).
El desarrollo del Autoland continuó utilizando tres aviones Varsity, y un tercer Canberra que reemplazó a dos perdidos por fallos en el motor. El sistema se mostró a muchas organizaciones e individuos, incluido el duque de Edimburgo en 1959.
Para octubre de 1958, los aviones BLEU habían completado más de 2000 aterrizajes totalmente automáticos.
El proyecto para integrar el Autoland en los bombarderos V desarrolló en paralelo al trabajo en los Varsity y Canberra, con un avión Vulcan, en el que se instaló el sistema durante 1959. El desarrollo y las pruebas de vuelo de Autoland progresaron con éxito, y el Vulcan con este sistema fue aceptado para el servicio militar en 1961 .
El nivel de seguridad requerido para Autoland militar se especificó como una tasa de fallos no superior a 1 entre 120,000 aterrizajes. Un sistema de un canal se juzgó adecuado para cumplir con esta tasa, pero la falta de redundancia hacía que el fallo de un solo componente hiciera que el piloto tuviera que retomaa el control manual y aterrizar visualmente la aeronave, o frustrara la toma con un motor y al aire. Se llevó a cabo un programa intensivo para establecer la capacidad de los pilotos para reconocer y recuperarse con éxito de los fallos del sistema. Además de las pruebas de vuelo en condiciones de niebla simulada, también se utilizó un simulador BLEU desarrollado especialmente para la investigación de aproximación y aterrizaje con baja visibilidad. Se llevó a cabo una investigación considerable sobre las formas de proporcionar al piloto información visual en una pantalla de cabina (Televiewer) y proporcionar información de seguimiento superpuesta en la vista exterior (Head Up Display).
Otro área de investigación se centró en las ayudas visuales necesarias para permitir al piloto controlar la situación de la aeronave durante las etapas finales de una aproximación. Además, se necesitaban suficientes señales visuales en la pista para permitir que el piloto despegara con seguridad con poca visibilidad y para que la aeronave no se saliera de la pista después del aterrizaje. Estas ayudas visuales también resultaron vitales para que el piloto detectara cualquier falla del sistema. El patrón de iluminación desarrollado y probado en vuelo por BLEU, en condiciones de base de nubes cero y visibilidad hacia adelante de 50 pies, finalmente se adoptó como el estándar de la Organización de Aviación Civil Internacional (OACI) para operaciones de baja visibilidad, y ahora está instalado en los principales aeropuertos de todo el mundo.
Las aerolíneas civiles habían seguido de cerca este desarrollo. Las espesas nieblas durante los meses de invierno eran comunes en Europa y empeoraban con el humo cerca de las principales ciudades (por ejemplo, el «smog» de Londres). Los retrasos y desvíos a alternativos causados por estas condiciones aumentaron mucho los costes para las aerolíneas, particularmente para BEA con su base de operaciones en Londres Heathrow.
A fines de la década de 1950 y principios de la de 1960, una mayor cooperación entre BLEU, la UK Air Registration Board, la industria de la aviación y las aerolíneas, llevó a la UK Air Registration Board a definir el requisito de seguridad para Autoland como no más de un accidente fatal en 10 millones de aterrizajes (10 veces más seguro que si los pilotos aterrizaran manualmente).
Para cumplir con un requisito de seguridad tan estricto, el sistema tenía que ser capaz de tolerar los fallos durante el aterrizaje automático. Esto podría lograrse utilizando un sistema triplex, con redundancia triple, como el actual utilizado para captación de datos por parte de Airbus: tres canales independientes, uno de los cuales se desconecta si sus datos no son conformes con los de los otros dos, o un sistema dúplex con un control de fallos.
Se reconoció que el cable magnético de guía no sería práctico para instalar en aeropuertos civiles y se hizo un esfuerzo considerable para mejorar la precisión del ILS durante la década de 1950. A principios de la década de 1960, los diseños nuevos para los transmisores ILS mejoraron hasta tal punto que ya no se requería el cable.
BLEU desempeñó un papel de liderazgo para lograr que el aterrizaje automático y el ILS fueran seguros bajo los estrictos requisitos establecidos para la aviación civil.
En 1961, la Autoridad Federal de Aviación de EE. UU. envió un Douglas DC-7 a RAE Bedford para que se instalara el sistema BLEU y se probara en vuelo. Después de eso, y de más pruebas al regresar a Atlantic City, la FAA apoyó firmemente la solución totalmente automática del Reino Unido, estandarizando así allí también las tomas automáticas en situaciones de mala visibilidad.
La flota de aviones BLEU se actualizó para que fuera más representativa de los aviones civiles. En 1961 se adquirió un DH Comet 3B (XP915) y en 1966 un DH Comet 2E (XV144) equipado con un sistema “tríplex” completo.
En 1963, BLEU recibió el Trofeo Cumberbatch por su destacada contribución a la seguridad aérea.
Se desarrollaron métodos para medir el alcance visual en la pista (RVR) y el alcance visual inclinado (SVR), y se llevaron a cabo pruebas para determinar la supervisión del piloto y las capacidades de toma de control en todas las condiciones de visibilidad. Este trabajo fue un aporte importante a la definición de un conjunto de categorías para operaciones en todas las condiciones meteorológicas, especificando la altura de decisión mínima y el RVR mínimo requerido para cada categoría, adoptado por la OACI en 1965.
En 1972, los aviones Comet fueron reemplazados por un BAC 1-11. El último de los aviones Varsity (WF417), que había sido el «caballo de batalla» para la mayoría de las pruebas de BLEU, fue reemplazado por un HS 748 XW750.
La introducción de Autoland en la flota de Trident de BEA requirió un gran esfuerzo por parte de BEA, Hawker Siddeley Aviation, Smiths Industries y BLEU. La certificación pasó de la Categoría I en 1965, a la Categoría II, III(a), III(b) y finalmente a la Categoría III(c) en 1979. Durante este tiempo se analizaron unos 40.000 aterrizajes automáticos.
Smiths y BLEU también desarrollaron un sistema de aterrizaje autónomo para el carguero Belfast de la RAF.
BLEU fue líder mundial en el desarrollo del aterrizaje automático, y los sistemas
actuales son esencialmente los mismos que desarrolló BLEU.
En 1974, BLEU pasó a llamarse División de Sistemas Operativos, parte del Departamento de Sistemas de Vuelo.
Fases del Autoland 1958
El avión se aproxima (A-B) al aeródromo con el piloto automático utilizando el altímetro barométrico para mantener una altitud constante de la aeronave (por ejemplo, 1500 pies), y utilizando la señal del localizador ILS para encontrar y luego mantener la línea central de la pista. El acelerador automático controla con precisión la velocidad de aproximación al valor seleccionado por el piloto. Cuando se intercepta el haz de la trayectoria de planeo del ILS (en B), se inicia el descenso (fase GLIDE) con el control de altura barométrica desconectado y controlando la aeronave para que siga el haz de la trayectoria de planeo del ILS (normalmente definiendo una trayectoria de descenso de 3 grados hacia el haz de planeo). La señal del localizador ILS todavía se usa para guía lateral y no abandonar el eje de la pista..
A una altura aproximada de 300 pies, la aeronave entra en la cobertura de la señal del cable guía (en C) y el piloto automático cambia automáticamente del localizador ILS al cable guía (fase LEADER CABLE). En elevación, la aeronave continúa siendo controlada a la trayectoria de planeo ILS.
A una altura de aproximadamente 100 pies (D), la señal de la trayectoria de planeo del ILS se desconecta y la aeronave se controla a un datum de cabeceo medio calculado automáticamente mientras vuela por la trayectoria de planeo (fase de ATTITUDE). Esto continúa durante unos segundos hasta una altura de unos 60 pies (E), cuando el control vertical se transfiere al radioaltímetro (fase FLARE), y la velocidad de descenso se reduce gradualmente para lograr un aterrizaje suave. Los aceleradores van cortando gases automáticamente a una velocidad constante hasta la velocidad de ralentí de vuelo segura del motor.
Aproximadamente a 20 pies (F), se desconecta la señal del cable líder, se nivelan las alas y se aplica el timón para eliminar automáticamente cualquier deriva debido a un viento cruzado (fase KICK OFF DRIFT). Después del contacto con el suelo, el piloto desactiva el piloto automático y dirige la aeronave a lo largo de la pista (G-H), utilizando información visual o un vector de dirección dado por una combinación de la señal del cable guía y el rumbo de la brújula. El piloto también aplica el frenado manual para llevar la aeronave a una velocidad de rodaje segura.