[Vídeo] General Atomics ha probado su UAV STOL «Mojave» a bordo del HMS Prince of Wales

General Atomics Aeronautical Systems (GA-ASI) ha realizado un ensayo con su avión no tripulado de despegue y aterrizaje corto (STOL) operándolo por primera vez desde un portaaviones, el británico HMS Prince of Wales, de la Royal Navy.

La demostración tuvo lugar el 15 de noviembre de 2023, cuando el Prince of Wales navegaba frente a la costa este de los EE. UU. Controlado por operadores a bordo del barco, el Mojave realizó un despegue, varios circuitos y aproximaciones y varias tomas, con toma final sobre la cubierta del portaaviones.

El despegue se realizó en un ángulo, no siguiendo el eje de la cubierta, para no utilizar el sky-jump. El desafío a largo plazo sería definir el margen de operación seguro para la aeronave cuando esté cargada con combustible, armas y sensores, y operando en condiciones menos favorables, así como su recuperación sin utilizar cables de frenado, caso de particular interés de estudio desde el punto de vista de la seguridad cuando haya otros aviones estacionados en la cubierta.

En esta foto se aprecia bien el slat, los grandes flaps, y su gran superficie alar

El ensayo de Mojave es el primero en Europa: la primera vez que un sistema de aeronaves pilotadas remotamente de este tamaño ha despegado y aterrizado desde un portaaviones, fuera de los Estados Unidos. El éxito de este ensayo anuncia un nuevo amanecer en cómo llevamos a cabo la aviación marítima y es otro emocionante paso en la evolución del Grupo de Ataque de Portaaviones de la Royal Navy en una fuerza de combate tripulada y no tripulada mixta”.

Contraalmirante James Parkin, Director de Desarrollo de la Royal Navy

Aplaudimos la visión de futuro de la Royal Navy al probar esta capacidad sin precedentes para sus portaaviones. Sabíamos que nuestra capacidad STOL permitiría que un UAS despegar y aterrizar con seguridad en el Prince of Wales. Ver a nuestro Mojave operar con éxito en este entorno abre una miríada de nuevas formas en que nuestras aeronaves pueden ser utilizadas para apoyar operaciones navales multidominio.

Linden Blue, CEO de GA-ASI

No es el primer avión no tripulado que opera desde este portaaviones, puesto que en septiembre de 2023 la Royal Navy realizó ensayos con un uav de carga, pensado para reabastecer los portaaviones. El drone de W Autonomous Systems (WAS), con sede en Southampton, voló desde la península de Lizard y aterrizó en la cubierta del HMS Prince of Wales, frente a la costa de Cornualles, entregó suministros y luego regresó a tierra, en un vuelo histórico.

El desarrollo del Mojave comenzó alrededor de 2018 o 2019. El objetivo inicial era crear un avión no tripulado que pudiera realizar despegues y aterrizajes verticales (VTOL), pero se comprobó, una vez más, que esto no era práctico ya que comprometería bien la carga de pago, bien la autonomía de la aeronave, por su excesivo consumo durante estas operaciones.

En su lugar, el desarrollo se centró en un diseño STOL, que mantendría las prestaciones de la aeronave, sin que la incorporación de dispositivos hipersustentadores especiales o ruedas tundra para pistas no preparadas comprometieran las prestaciones del avión.

El Mojave tiene una configuración similar a la del MQ-9 Reaper, y está propulsado por un turbohélice Rolls-Royce M250. Es un desarrollo del MQ-1C, del que se diferencia principalmente en el ala y el tren de aterrizaje. El Mojave cuenta con slats retráctiles, flaps de gran envergadura, y alerones que doblan función como alerón y como flap (flaperones). Además, los flaps son soplados, de doble ranura. El tren de aterrizaje está reforzado, monta amortiguadores especiales,y neumáticos de mayor tamaño, y de menor presión de inflado, al estilo ruedas de tundra, para poder operar en pistas no preparadas, como demostró en agosto de este año.

Además de poder operar desde pistas no preparadas o desde cubiertas de barco, sin hacer uso de sus cables ni catapultas, es muy fácilmente transportable, pudiéndose desensamblar y transportar en un Hércules, y volver a ensamblar y estar listo para despegar en una hora y media, con un equipo de tierra de cuatro personas.

También se está desarrollando de un ala opcional, plegable, para el MQ-9B, que lo convertiría en un aparato STOL, que recibiría el nombre MQ-9B STOL. Esta variante está siendo considerada por la Royal Navy y otras armadas que operan aviones desde grandes buques de guerra de cubierta plana sin catapultas y equipos de detención.

¿Podríamos verlo en un futuro cercano en el Kaga, el Anadolu, o nuestro Juan Carlos I?¿Se estará planteando el Sirtap, de desarrollo español, ya con capacidad embarcada?

Curiosamente, no es la primera vez que hablamos de aviones no tripulados embarcados en portaaviones, las primeras veces que lo hicimos fue para hablar de los TDR-1 y TDN-1, ¡de los años 40!

Fuentes: General Atomic, Royal Navy, Navy Look Out

El dron cuadricóptero más grande del mundo, con un peso inferior a 25 kg, realiza su primer vuelo.

La Autoridad de Aviación Civil (CAA) del Reino Unido permite que los vehículos aéreos no tripulados con un peso de despegue inferior a 25 kg (55 lb) vuelen sin normas especiales, por lo que el equipo de Manchester diseñó un modelo que pesaba 24.5 kg (54 lb) para cumplir con el límite, a pesar de medir 6.4m (21 ft) de punta a punta .

El innovador diseño del dron, llamado Giant Foamboard Quadcopter (GFQ), lo hace único en su clase. Los cuatro brazos están formados por una serie de estructuras huecas en forma de caja que se pueden desmontar fácilmente para transportarlo. Hasta la fecha no hay registro de un cuadricóptero no tripulado más grande que el vehículo de Manchester.

El proyecto comenzó como una iniciativa impulsada por la curiosidad para inspirar la creatividad de los estudiantes en el diseño, utilizando un material alternativo de bajo costo adecuado para estructuras aeroespaciales ligeras y más respetuoso con el medio ambiente que la fibra de carbono embebida en matriz epoxi, no reciclable, habitual.

A diferencia de la fibra de carbono, los materiales de lámina de baja densidad pueden ser altamente reciclables, e incluso compostables. Los investigadores esperan que esta demostración inspire a la próxima generación de diseñadores a pensar en la sostenibilidad desde una perspectiva completamente nueva.

Dan Koning, ingeniero de investigación en la Universidad de Manchester, quien lideró el diseño y construcción del vehículo, dijo: «El foamboard -cartón pluma en español, normalmente- es un material interesante para trabajar, utilizado de la manera correcta, podemos crear estructuras aeroespaciales complejas donde cada componente está diseñado para ser solo tan resistente como necesita ser; no hay lugar para la sobreingeniería aquí».

«Gracias a esta disciplina de diseño y después de una extensa investigación previa, podemos afirmar con confianza que hemos construido el dron cuadricóptero más grande del mundo».

Si bien este dron se desarrolló puramente como un ejercicio de prueba de concepto, futuras versiones de este tipo de vehículo podrían diseñarse para transportar cargas pesadas a cortas distancias o utilizarse como una «nave nodriza» (o portaaviones aéreo) en experimentos de acoplamiento aire-aire con otras aeronaves.

El cuadricóptero fue construido con láminas de cartón pluma de 5 mm de grosor, que tienen un núcleo de espuma y una capa de papel. Las láminas fueron cortadas a medida con láser y ensambladas en la estructura tridimensional a mano utilizando solo pegamento termofusible.

Nota de Prensa

Un UAV ha aterrizado y despegado de un portaaviones de la Royal Navy

Un avión sin piloto ha aterrizado -y despegado nuevamente- desde un portaaviones de la Royal Navy por primera vez.

El dron HCMC de W Autonomous Systems voló desde Predannack cerca de Culdrose hasta el HMS Prince of Wales en las cercanías de Lizard, entregando regalos ceremoniales y regresando poco después para aterrizar llevando muestras de combustible.

Este innovador ensayo es un indicio del futuro, cuando es probable que los drones reemplacen a los helicópteros en el traslado de suministros y provisiones entre barcos en un grupo de tareas.

Fuente: nota de prensa

Blind Landing Experimental Unit (BLEU) – el nacimiento del aterrizaje a ciegas

Aterrizaje a ciegas, sin automatizar

BLEU: Blind Landing Experimental Unit

La Unidad Experimental de Aterrizaje a ciegas (BLEU) del Royal Aircraft Establishment (RAE) se formó en 1945, inicialmente en RAF Woodbridge pero se trasladó a RAF Martlesham Heath a principios de 1946. Era una unidad multidisciplinar, atrayendo personal de RAE Farnborough y el Establecimiento de Investigación de Telecomunicaciones, Malvern (TRE), encargado del desarrollo de aproximacióna  ciegas y aterrizaje autónomo de aeronaves RAF, navales y civiles.

El sistema desarrollado por BLEU utilizó señales de radio como guía, un sistema de aterrizaje por instrumentos (ILS) anterior que definía la línea central de la pista, y un ángulo de aproximación de 3 grados a la pista. La guía en azimut durante la fase final de la aproximación se guiaba con un cable magnético, y se desarrolló un radioaltímetro controlar la y un sistema de gases automático para controlar la velocidad de la aeronave.

Los componentes del sistema se desarrollaron por separado en varios tipos de aviones y en 1950 todo el sistema de aterrizaje automático se había integrado en un avión Devon para realizar las demostraciones finales. En 1953, el desarrollo se extendió a un bombardero Canberra, aunque en ese momento, el aterrizaje automático tenía una prioridad baja para la RAF, y el esfuerzo se concentró en otros proyectos. Esto cambió cuando se emitió un requisito operativo para el aterrizaje automático para los “V-bomber” en 1954.

Tras los ensayos en el Canberra y el Devon, el sistema completo se instaló en un avión más grande, el Varsity. La primera aproximación y aterrizaje completamente automáticos en el Varsity se realizaron el 11 de noviembre de 1954. El desarrollo del sistema completo continuó en Martlesham Heath hasta principios de 1957 cuando BLEU se mudó a Thurleigh ( RAE Bedford).

El desarrollo del Autoland continuó utilizando tres aviones Varsity, y un tercer Canberra que reemplazó a dos perdidos por fallos en el motor. El sistema se mostró a muchas organizaciones e individuos, incluido el duque de Edimburgo en 1959.

Para octubre de 1958, los aviones BLEU habían completado más de 2000 aterrizajes totalmente automáticos.

El proyecto para integrar el Autoland en los bombarderos V desarrolló en paralelo al trabajo en los Varsity y Canberra, con un avión Vulcan, en el que se instaló el sistema durante 1959. El desarrollo y las pruebas de vuelo de Autoland progresaron con éxito, y el Vulcan con este sistema fue aceptado para el servicio militar en 1961 .

El nivel de seguridad requerido para Autoland militar se especificó como una tasa de fallos no superior a 1 entre 120,000 aterrizajes. Un sistema de un canal se juzgó adecuado para cumplir con esta tasa, pero la falta de redundancia hacía que el fallo de un solo componente hiciera que el piloto tuviera que retomaa el control manual y aterrizar visualmente la aeronave, o frustrara la toma con un motor y al aire. Se llevó a cabo un programa intensivo para establecer la capacidad de los pilotos para reconocer y recuperarse con éxito de los fallos del sistema. Además de las pruebas de vuelo en condiciones de niebla simulada, también se utilizó un simulador BLEU desarrollado especialmente para la investigación de aproximación y aterrizaje con baja visibilidad. Se llevó a cabo una investigación considerable sobre las formas de proporcionar al piloto información visual en una pantalla de cabina (Televiewer) y proporcionar información de seguimiento superpuesta en la vista exterior (Head Up Display).

Otro área de investigación se centró en las ayudas visuales necesarias para permitir al piloto controlar la situación de la aeronave durante las etapas finales de una aproximación. Además, se necesitaban suficientes señales visuales en la pista para permitir que el piloto despegara con seguridad con poca visibilidad y para que la aeronave no se saliera de la pista después del aterrizaje. Estas ayudas visuales también resultaron vitales para que el piloto detectara cualquier falla del sistema. El patrón de iluminación desarrollado y probado en vuelo por BLEU, en condiciones de base de nubes cero y visibilidad hacia adelante de 50 pies, finalmente se adoptó como el estándar de la Organización de Aviación Civil Internacional (OACI) para operaciones de baja visibilidad, y ahora está instalado en los principales aeropuertos de todo el mundo.

Las aerolíneas civiles habían seguido de cerca este desarrollo. Las espesas nieblas durante los meses de invierno eran comunes en Europa y empeoraban con el humo cerca de las principales ciudades (por ejemplo, el «smog» de Londres). Los retrasos y desvíos a alternativos causados por estas condiciones aumentaron mucho los costes para las aerolíneas, particularmente para BEA con su base de operaciones en Londres Heathrow.

A fines de la década de 1950 y principios de la de 1960, una mayor cooperación entre BLEU, la UK Air Registration Board, la industria de la aviación y las aerolíneas, llevó a la UK Air Registration Board a definir el requisito de seguridad para Autoland como no más de un accidente fatal en 10 millones de aterrizajes (10 veces más seguro que si los pilotos aterrizaran manualmente).

Para cumplir con un requisito de seguridad tan estricto, el sistema tenía que ser capaz de tolerar los fallos durante el aterrizaje automático. Esto podría lograrse utilizando un sistema triplex, con redundancia triple, como el actual utilizado para captación de datos por parte de Airbus: tres canales independientes, uno de los cuales se desconecta si sus datos no son conformes con los de los otros dos, o un sistema dúplex con un control de fallos.

Se reconoció que el cable magnético de guía no sería práctico para instalar en aeropuertos civiles y se hizo un esfuerzo considerable para mejorar la precisión del ILS durante la década de 1950. A principios de la década de 1960, los diseños nuevos para los transmisores ILS mejoraron hasta tal punto que ya no se requería el cable.

BLEU desempeñó un papel de liderazgo para lograr que el aterrizaje automático y el ILS fueran seguros bajo los estrictos requisitos establecidos para la aviación civil.

En 1961, la Autoridad Federal de Aviación de EE. UU. envió un Douglas DC-7 a RAE Bedford para que se instalara el sistema BLEU y se probara en vuelo. Después de eso, y de más pruebas al regresar a Atlantic City, la FAA apoyó firmemente la solución totalmente automática del Reino Unido, estandarizando así allí también las tomas automáticas en situaciones de mala visibilidad.

La flota de aviones BLEU se actualizó para que fuera  más representativa de los aviones civiles. En 1961 se adquirió un DH Comet 3B (XP915) y en 1966 un DH Comet 2E (XV144) equipado con un sistema “tríplex” completo.

En 1963, BLEU recibió el Trofeo Cumberbatch por su destacada contribución a la seguridad aérea.

Se desarrollaron métodos para medir el alcance visual en la pista (RVR) y el alcance visual inclinado (SVR), y se llevaron a cabo pruebas para determinar la supervisión del piloto y las capacidades de toma de control en todas las condiciones de visibilidad. Este trabajo fue un aporte importante a la definición de un conjunto de categorías para operaciones en todas las condiciones meteorológicas, especificando la altura de decisión mínima y el RVR mínimo requerido para cada categoría, adoptado por la OACI en 1965.

Visibilidad, RVR y SVR

En 1972, los aviones Comet fueron reemplazados por un BAC 1-11. El último de los aviones Varsity (WF417), que había sido el «caballo de batalla» para la mayoría de las pruebas de BLEU, fue reemplazado por un HS 748 XW750.

La introducción de Autoland en la flota de Trident de BEA requirió un gran esfuerzo por parte de BEA, Hawker Siddeley Aviation, Smiths Industries y BLEU. La certificación pasó de la Categoría I en 1965, a la Categoría II, III(a), III(b) y finalmente a la Categoría III(c) en 1979. Durante este tiempo se analizaron unos 40.000 aterrizajes automáticos.

Smiths y BLEU también desarrollaron un sistema de aterrizaje autónomo para el carguero Belfast de la RAF.

BLEU fue líder mundial en el desarrollo del aterrizaje automático, y los sistemas

actuales son esencialmente los mismos que desarrolló BLEU.

En 1974, BLEU pasó a llamarse División de Sistemas Operativos, parte del Departamento de Sistemas de Vuelo.

Autoland CAT III

Fases del Autoland 1958

Fases del autoland

El avión se aproxima (A-B) al aeródromo con el piloto automático utilizando el altímetro barométrico para mantener una altitud constante de la aeronave (por ejemplo, 1500 pies), y utilizando la señal del localizador ILS para encontrar y luego mantener la línea central de la pista. El acelerador automático controla con precisión la velocidad de aproximación al valor seleccionado por el piloto. Cuando se intercepta el haz de la trayectoria de planeo del ILS (en B), se inicia el descenso (fase GLIDE) con el control de altura barométrica desconectado y controlando la aeronave para que siga el haz de la trayectoria de planeo del ILS (normalmente definiendo una trayectoria de descenso de 3 grados hacia el haz de planeo). La señal del localizador ILS todavía se usa para guía lateral y no abandonar el eje de la pista..

A una altura aproximada de 300 pies, la aeronave entra en la cobertura de la señal del cable guía (en C) y el piloto automático cambia automáticamente del localizador ILS al cable guía (fase LEADER CABLE). En elevación, la aeronave continúa siendo controlada a la trayectoria de planeo ILS.

A una altura de aproximadamente 100 pies (D), la señal de la trayectoria de planeo del ILS se desconecta y la aeronave se controla a un datum de cabeceo medio calculado automáticamente mientras vuela por la trayectoria de planeo (fase de ATTITUDE). Esto continúa durante unos segundos hasta una altura de unos 60 pies (E), cuando el control vertical se transfiere al radioaltímetro (fase FLARE), y la velocidad de descenso se reduce gradualmente para lograr un aterrizaje suave. Los aceleradores van cortando gases automáticamente a una velocidad constante hasta la velocidad de ralentí de vuelo segura del motor.

Aproximadamente a 20 pies (F), se desconecta la señal del cable líder, se nivelan las alas y se aplica el timón para eliminar automáticamente cualquier deriva debido a un viento cruzado (fase KICK OFF DRIFT). Después del contacto con el suelo, el piloto desactiva el piloto automático y dirige la aeronave a lo largo de la pista (G-H), utilizando información visual o un vector de dirección dado por una combinación de la señal del cable guía y el rumbo de la brújula. El piloto también aplica el frenado manual para llevar la aeronave a una velocidad de rodaje segura.

Fuentes

Miles M.52, el avión británico que pudo romper la barrera del sonido antes que el X-1

Visión artística del M.52, vía Wikipedia

En 1942, el Ministro del Aire y el Ministerio de Aviación se acercaron a Miles Aircraft con un contrato de alto secreto para un avión de investigación turborreactor diseñado para alcanzar velocidades supersónicas. El Miles M.52 fue diseñado para alcanzar una velocidad de 1000 mph a 36000 pies durante 1,5 minutos.

Durante los años 30 y cuarenta se había estado investigando una nueva forma de propulsión. La idea era dejar atrás las hélices y utilizar chorros de gases. Frank Whittle era el británico que trabajaba en el motor a reacción. En paralelo, Hans von Ohain en Alemania, Virgilio Leret en España y Secondo Campini en Italia, hacían lo propio.

Estos motores, al no llevar hélice, podrían volar mucho más rápido (la hélice limita la velocidad máxima que puede alcanzar una aeronave). Tan rápido que se esperaba que pudieran romper la barrera del sonido. Y para ello se diseñaría el M.52.

El diseño abría nuevos caminos en todas las áreas de la ingeniería aeronáutica. Las alas eran muy delgadas, de perfil bi convexo, y estaban diseñadas para quedar dentro del cono formado por las ondas de choque causadas por la puntiaguda nariz del avión.

Modelo de túnel de viento. Foto de Wikipedia

Para volar en régimen supersónico hay varias posibilidades, una es utilizar perfiles aerodinámicos, que se comportan horrorosamente mal en regímenes subsónicos. La otra, hacer volar un perfil subsónico. Y, justo detrás de una onda de choque, además de subir la presión y la temperatura, la velocidad del sonido vuelve a ser subsónica. Así que se pueden utilizar perfiles subsónicos siempre que vuelen dentro del cono formado por las ondas de choque. Por ese motivo los aviones supersónicos tienen alas muy cortas y con mucha flecha. Y morros muy puntiagudos. También por ese motivo se observan en las entradas de los motores conos o placas puntiagudas, para generar ondas de choque que ya pre-comprimen el aire, antes de entrar al propio compresor, y además baja su velocidad a régimen subsónico.

Maqueta de la cabina

El único tripulante iba alojado en el cono de morro, que a su vez actuaba de cápsula de evacuación, al ir unida al resto del fuselaje a través de una sección pirotécnica. Una vez separada del fuselaje, la cápsula descendería en paracaídas hasta una altitud segura. A partir de ahí el piloto debía abandonarla la cápsula en paracaídas por sus propios medios.

Motor W.2/700

El desarrollo del motor fue para Whittle. Utilizaría su W2/700 con poscombustión. Ese motor sería más tarde conocido comercialmente  como Rolls Royce Derwent.

El fuselaje se basó en la forma de las balas que las pruebas de disparo mostraron que viajaban a una velocidad supersónica. El ala tenía un borde de ataque parecido a una navaja, tan afilado que los mecánicos que se cortaban la apodaron Gillette

Dennis Bancroft, ingeniero aerodinámico de Miles
Maqueta a escala 1:1 del Miles M.52

Sin embargo, al final de la guerra, el Director de Investigación Científica, Sir Ben Lockspeiser, canceló el proyecto «… en vista de los peligros desconocidos cercanos a la velocidad del sonido… considerado imprudente proceder con los experimentos a gran escala». En realidad, a pesar del 90% del trabajo de diseño completado y con el 50% de la construcción terminada, el proyecto cayó en una medida de ahorro del Tesoro.

Los investigadores y diseñadores británicos lograron acercarse mucho a la barrera y bien podrían haber sido los primeros en romperla.

Gran Bretaña y EE. UU. llegaron a un acuerdo para intercambiar información y datos. Según Dennis Bancroft, jefe de aerodinámica de Miles, los ingenieros de la compañía estadounidense Bell Aircraft recibieron información detallada sobre el Miles M.52. Sin embargo, después de que los estadounidenses recibieron toda la información de los británicos, incumplieron el acuerdo. Los británicos no recibieron información a cambio. Parece ser que los diseños originales del empenaje del XS-1 eran convencionales, y finalmente se pasó al tipo de Miles, con todo el timón móvil.

Tras la cancelación del M.52, el Gobierno creó un nuevo programa que implicara «ausencia de peligro para los pilotos de prueba y economía de propósito». Se recortaban gastos, y se reducía el tamaño del vehículo, que pasaría a ser no tripulado y propulsado por cohetes, pasando a ser más un misil que una avión, o un avión no tripulado (UAV)

El Royal Aircraft Establishment fue responsable del desarrollo de un motor de cohete adecuado y a cargo del diseño de la aeronave estuvo Barnes Wallis de Vickers Armstrong, el padre de la bomba que rebota y la bomba sísmica Tallboy de 12000 libras.

Los UAV eran réplicas a escala 3/10 del M.52 y el primer lanzamiento del avión-cohete tuvo lugar el 8 de octubre de 1947.

Mosquito con un M.52 no tripulado en la panza. Foto de Wikipedia

Un De Havilland Mosquito de la RAF despegó el 8 de octubre de 1947, de St. Eval en Cornualles, con un avión-cohete en su panza. Pero su el motor explotó poco después del lanzamiento. Seis días después, Chuck Yeager rompió la barrera del sonido por primera vez en el Bell X-1, un avión que compartía muchas similitudes con el diseño británico. Después de la explosión del prototipo, y del éxito del XS-1, el Daily Express asumió la causa de defender la vuelta del programa M.52, pero fue en vano.

En octubre de 1948 se lanzó un segundo avión-cohete. Esta vez sí tuvo éxito y alcanzó Mach 1,38, (1.5 según otras fuentes) en un vuelo nivelado estable. Pero, en lugar de terminar su vuelo estrellándose contra el mar, como estaba previsto, el modelo ignoró los comandos de radio que se le enviaron y fue observado por última vez (en el radar) internándose en el Atlántico.

El toque final de ironía se produjo cuando se suspendieron incluso estas pruebas con cohetes, por «el alto costo y poco retorno». El dividendo total de esta inversión fue la información de que un modelo a pequeña escala del Miles M.52 había superado con éxito la barrera del sonido. Pero, el Reino Unido ya había perdido la oportunidad de ser la primera nación en lograr un vuelo supersónico pilotado.

Como era de esperar, las afirmaciones de la influencia británica en el icónico Bell X-1 son ampliamente disputadas en los EE. UU., y la historia generalmente la escriben los vencedores.

Tal vez con un poco más de financiación de este lado del Atlántico, el M.52 podría haber ganado la carrera por la barrera del sonido a Chuck Yeager y al X-1.

El avión

The Engineer recupera la descripción que hicieron del aparato n 1946, cuando por la cancelación del proyecto dejó de ser secreto. La reproducimos debajo.

Modelo a escala del M.52, The Engineer

A Miles Aircraft se le había encomendado la tarea de construir el M52 con motor turborreactor, que estaba destinado a volar a 1,000 mph y alcanzar una altura de 36,000 pies. Para lograr esto, los ingenieros de Miles idearon un diseño radicalmente distinto a todo lo que se conocía en la época.

Parecido a una bala alada, las dimensiones generales debían haber sido de 33 pies de largo y 27 pies de envergadura, siendo las alas algo más cortas que las de aviones de longitud similar.

Como un paso hacia la producción de una forma de ala que tenga una baja resistencia en el rango de velocidad supersónica y, sin embargo, permita un vuelo a baja velocidad con un buen control, Miles Aircraft Ltd diseñó un ala biconvexa, con bordes de ataque y de salida muy afilados.

Miles «Gillete», con alas y empenaje modificados

Este ala biconvexa se probó en un Miles Falcon estándar para demostrar la viabilidad del diseño a bajas velocidades. El motor, que huniera producido 17.000 HP en vuelo a toda velocidad, sería suministrada por Power Jets (Research and Development). Junto con el tanque de combustible y los controles de vuelo, el motor habría ocupado casi todo el fuselaje.

Miles Falcon Six con ala y emepane modificados, de perfil biconvexo, de madera

Se puede describir como una unidad de tres etapas, la primera etapa que consta de un motor a reacción ordinario con un compresor centrífugo. Los gases de este motor pasan a través de otro compresor,  trayendo un suministro adicional de aire, que se mezcla con la corriente principal. La mezcla luego pasa a través de un ‘athodyd’ (conducto aerotermodinámico), en el que se inyecta y quema el combustible, aumentando aún más la velocidad de los gases, que finalmente son expulsados por una tobera en la cola. El motor tiene 3.5 pies de diámetro y 23 pies de largo.

Con toda esa potencia a solo unos centímetros del piloto, así como las alturas extremas a las que operaría el M.52, no sorprende que se haya instalado un sistema de eyección. La cabina presurizada fue diseñada para ser separada por completo del fuselaje mediante la detonación de cargas de explosivo plástico en las estructuras tubulares que conectaban la cabina con el fuselaje. En teoría, la presión del aire obligaría a la cabina a alejarse del avión y un paracaídas lo ayudaría a descender gradualmente.

Una vez que la cabina había reducido la velocidad a una velocidad razonable y descendido a una altura designada, el piloto saltaría de la cápsula usando su propio paracaídas. Si todo iba bien, volvería a la Tierra en un avión completamente intacto. Aunque a velocidades tan elevadas que el aterrizaje suena casi tan aterrador como una eyección.

Para el tren de aterrizaje, se tuvieron que diseñar llantas y ruedas especiales, ya que la velocidad de toma probablemente habría sido de aproximadamente 170 mph, con una carrera de dos millas antes de detenerse. El peso total diseñado es de aproximadamente 8200 libras en el despegue, lo que da una carga alar de 58 libras por pie cuadrado.

Revista The Engineer, septiembre de 1946

Fuentes: como siempre, son varias las fuentes. Citamos las que parecen más estables. Avia Déjà Vu, Museum of Berkshire y The Engineer