SAF (Sustainable Aviation Fuel) SC (Sin Complejos) o ¿qué es el SAF?

Ciclo abierto de los combustibles fósiles vs ciclo cerrado de los SAF.
Fuente: Guía para principiantes a los biocombustibles

¿Qué son los SAF – Sustainable Aviation Fuels?

En los últimos tiempos se habla de que el futuro verde de la aviación pasa bien por los SAF bien por el hidrógeno. La electricidad no la mencionamos, puesto que ya hemos discutido muchas veces que es más bien apta sólo para algunas aplicaciones muy concretas. Pero, ¿que es el Sustainable Aviation Fuel?

Tras esas siglas se esconden los ya conocidos biocombustibles más otros combustibles sintéticos de otras procedencias, cuyos procesos de obtención han sido certificados como seguros.

Así pues, si los SAF no dejan de ser hidrocarburos, y por tanto su quema no deja de producir dióxido de carbono y agua, ¿cuáles son sus ventajas? La principal es la diferencia de ciclo de producción respecto a los combustibles fósiles. En un combustible fósil, el ciclo es abierto. Se extrae, se transporta, se procesa, se distribuye, se quema, y se libera el dióxido de carbono y otros contaminantes. Sin embargo, el ciclo del SAF sería cerrado, puesto que el dióxido de carbono emitido sería vuelto a absorver por las plantas de las que deriva el biocombustible. Llegados a este punto, la pregunta obligatoria es, ¿Qué rendimiento tiene ese ciclo?

¿Y los problemas con los aromáticos de los biocombustibles?

Hasta ahora, uno de los problemas conocidos para usar los biocombustibles es que debían ir mezclados con keroseno normal y corriente. Esto se debía a la falta de hidrocarburos aromáticos en los biocombustibles, ahora SAF.

Por ello los vuelos que se habían realizado hasta el momento eran con mezcla de combustible fósil y combustible sostenible. Sin embargo, dentro de los procesos certificados para la obtención de SAF hay ahora algunos que producen un combustible que sí incluye aeromáticos, lo que ha hecho posible que durante este año se hayan anunciado varios vuelos con 100% SAF, incluso para todos los motores.

Nota aclaratoria: por seguridad las pruebas no se hacen nunca «a lo bruto», y primero se hace alimentando un motor con el combustible nuevo y el otro con el combustible tradicional, y en otras fases de los ensayos se reemplaza el combustible de ambos motores con el combustible ensayado.

Tabla con los procesos aprobados para la producción de SAF

Los procesos que proporcionan combustibles con mayor cantidad de aeromáticos son los FT-SPK y SPK/A, cuyas fuentes para producir el combustible son carbón, gas natural (algo así como los combustibles sintéticos usados por los alemanes ya en la Segunda Guerra Mundial) y biomasa. Sin embargo, 2 de las tres fuentes de este combustible son hidrocarburos fósiles, lo que haría reducirse el rendimiento del ciclo del SAF que mencionábamos antes.

Es posible, sin embargo, que gracias a la mezcla de este tipo de SAF con otros combustibles sostenibles sea lo que ha permitido que se realicen vuelos con 100% SAF, en lugar de con mezcla.

Fuentes para la obtención de los biocombustibles

Ya la tabla anterior nos deja entrever que hay varias fuentes posibles como materia prima y cuáles son. Las desgranamos.

Azúcar/Almidón

En éste el azúcar y el almidón se obtienen de plantas de consumo humano, lo que entra en conflicto directo con la obtención de alimento. De estas materias primas se derivan principalmente los bioetanoles, en los que Estados Unidosy Brasil son líderes hoy día. La brasileña Embraer incluso tiene certificado su Ipanema, un avión agrícola, para ser alimentado por este bioetanol.

Aceite

Se han intentado utilizar distintos aceites para la obtención de biocombustibles. Hace unos años la jatropha y la camelina salían en este blog, como los biocombustibles, con cierta frecuencia. Sin embargo su transformación no es rentable, asi que no pasaron de ensayos. Las algas, que también eran una fuente prometedora de biocombustibles, son difíciles de controlar y cultivar, y sus resultados económicos no son buenos aún. Las alófitas han dado algunos mejores resultados, aún sólo experimentales.

Otro de los cultivos, que no compite con la alimentación, es un tipo de tabaco modificado, en desarrollo en Sudáfrica como Proyecto Solaris.

Más fuentes de aceite, que no compiten con la alimentación, es el reciclaje de aceites de cocinar usados y los residuos de las grasas animales provenientes de la industria alimentaria. Se estima que anualmente se producen en el mundo 25 millones de toneladas de aceite usado de cocina y 5 millones de toneladas de grasas animales, lo que, en su conjunto, equivale al 10% de la producción mundial de bombustibles de aviación. El mayor problema de esta fuente es el coste de su recogida.

Biomasa lignocelulósica

La biomasa lignocelulósica tiene una gran tradición como combustible: siempre hemos quemado madera. Y desde mediados del siglo XX se intenta utilizar como fuente de combustible, convirtiéndola en etanol.

Esta materia prima tiene el potencial de ser utilizada para la producción de SAF a través de procesos avanzados. Se puede obtener directamente de la silvicultura de rotación corta (por ejemplo, adoptando especies de eucalipto, álamo, sauce y otras) o de residuos leñosos o subproductos de las industrias de procesamiento de la madera.

Además, se han identificado otras fuentes de material lignocelulósico como las gramíneas perennes. En general, estas biomasas se caracterizan por su rendimiento relativamente alto, bajos costos y potencial para crecer en tierras marginales.

A su vez, los residuos agrícolas se refieren a la biomasa del cultivo como hojas, paja, bagazo, tallos y cascarillas. Sus propiedades y composición son diversas, pero típicamente están constituidas por lignocelulosa. A pesar de su uso ocasional en la agricultura, se ha considerado su potencial para producir combustibles. Del 10 al 25 por ciento de los residuos podrían ser utilizados de forma sostenible sin competir con los usos tradicionales. Esta cantidad proporcionaría del 4 al 10 por ciento de la demanda mundial de combustible para el transporte en 2030 si se utilizara para producir etanol o diésel, como se supone en el informe de OACI que usamos como fuente.

Finalmente, otra de las fuentes posibles de lignocelulosa es obtenerla de los residuos sólidos urbanos, durante su procesado para reciclaje.

Procedimientos de transformación

Distintos procesos y fuentes para la obtención de SAF

Básicamente hay tres tipos de procesos: conversión de grasas, los bioquímicos y los termoquímicos.

El primero de ellos es el proceso mejor conocido hasta ahora, y el que permite la obtención de SAF a escala industrial. Es similar al refinado del petróleo.

Dentro de los segundos, sólo hay uno aprobado para producir combustible de aviación certificado: la gasificación de la biomasa sólida a temperaturas elevadas para obtener una mezcla de gases, mayoritariamente monóxido de carbono e hidrógeno, que se denomina “gas de síntesis” o “syngas”. Después de la purificación, el gas de síntesis se sintetiza en una mezcla de líquidos y gases que contienen cadenas de hidrocarburos de diferentes tamaños, en una reacción catalítica conocida como el proceso de Fischer-Tropsch. Dependiendo de la temperatura del proceso, los catalizadores utilizados y los pasos posteriores al refinado (por ejemplo, cuando se separan los componentes de la mezcla), es posible obtener productos con características similares al combustible de aviación.

Para terminar, los procesos bioquímicos. Dos rutas están incluidas en la categoría de conversión bioquímica. En el proceso alcohol-to-jet (ATJ), SAF se produce a partir de moléculas de alcohol, como etanol o isobutanol, hechas de plantas que contienen azúcar/almidón, materiales lignocelulósicos o procesos innovadores. ATJ se compone de procesos como deshidratación (eliminación de agua), oligomerización (conversión de moléculas pequeñas en más complejos) y la hidrogenación (adición de hidrógeno). El proceso HFS-SIP (Iso-Parafinas Sintéticas producidas a partir de ésteres y ácidos grasos hidroprocesados, antes conocido como DSHC: Fermentación directa de azúcares a hidrocarburos) emplea microorganismos modificados genéticamente para convertir el azúcar en hidrocarburos o lípidos. En uno de estos casos, estos microorganismos, en lugar de producir etanol, producen sustancias como el farneseno (isoparafina sintética SIP) que puede convertirse en un producto de tan buenas características como el combustible de aviación. En este caso específico, los bajos rendimientos son restricción importante.

Conclusiones

Emisiones de CO2 por industria, fuente

El uso de los combustibles sostenibles para la aviación puede reducir las emisiones de esta industria que, actualmente, solo contribuye con un 2% de emisiones de CO2 al total.

Esta reducción dependerá del rendimiento del ciclo cerrado del SAF. Lo ideal es que fuera igual a 1.

Sin embargo la introducción de combustibles sintéticos provenientes de combustibles fósiles como el carbon o el gas natural ya hace que se reduzca ese rendimiento.

Emisiones de dióxido de carbono según energía producida por biocombustible, teniendo en cuenta y sin tener las consideraciones de cambio de uso de la tierra (LUC – Land Use Change)

Otros factor muy importante que puede influir en ese rendimiento es la fuente de energía utilizada para la transformación de las materias primas en combustibles, siendo imprescindible las energías renovables, sin olvidar la importancia de la energía nuclear como respaldo. Si la energía procediera de la quema de otros combustibles, el rendimiento del ciclo sería aún mucho menor.

Tampoco podemos perder en cuenta los distintos impactos que puede tener la producción de los combustibles sostenibles para la aviación, como el cambio de uso del suelo, impacto en el precio de los alimentos…

Repercusiones socio económicas del SAF

Según el informe de la OACI, con la previsión de uso del suelo tanto para vivienda como alimentación, sin olvidar las zonas no cultivables y las protegidas por ley, sería posible la transición a la producción de SAF sin riesgos para la producción de alimentos.

Uso del suelo, actual y futuro

La ventaja principal del SAF es que no necesita modificar las aeronaves ni los motores, y por tanto tampoco la cadena logística de suministro, mantenimiento, etc, sufriría un gran impacto. Y además de buscar que sea sostenible y renovable, se puede buscar la independencia de los proveedores habituales de combustibles fósiles, deslocalizando su producción. Por tanto, el SAF es, a corto plazo, la mejor opción para reemplazar los combustibles fósiles, siempre y cuando se logre que su impacto socioeconómico sea positivo, y el rendimiento del ciclo de emisión de contaminantes sea lo más próximo a uno.

Sin embargo, a largo plazo parece que un cambio al hidrógeno es la mejor solución.

Sea como fuere, parece que los objetivos para 2035 pueden ser muy ambiciosos, y 2050 podrían ser más realistas.

Ciclo del SAF según Airbus

Fuente: ICAO’s SAF guide (pdf)

Renard R-35, el primer avión de aerolínea presurizado (1938)

Renard R-35

Cuando uno empieza a leer acerca de aviación, parece que tan solo los estadounidenses han hecho cosas importantes. Cuando uno se va especializando más descubre todos los avances alemanes de la Segunda Guerra Mundial, o los japoneses. Poco a poco se encuentra uno todo lo que hicieron los británicos o los franceses. Y si uno lee con atención incluso encuentra cosas interesantes hechas en España o Italia. Bélgica parece uno de esos países que siempre fue a remolque, comprando equipo extranjero. Y, sin embargo, nada más lejos de la verdad, tuvieron también sus momentos de despuntar con innovaciones maravillosas. Este es el caso del Renard R-35, un avión de pasajeros presurizado, ¡de antes de la Segunda Guerra Mundial!

Continuar leyendo «Renard R-35, el primer avión de aerolínea presurizado (1938)»

Movilidad Aérea Urbana: ¿Y si certificar los eVTOL no fuera tan sencillo?

Y esta vez no lo decimos nosotros, sino la US Government accountability office, que ha realizado un informe de 41 páginas, entrevistándose con los distintos actores del sector, desde las empresas que están diseñando e intentando certificar los vehículos de movilidad aérea urbana a ingenieros, mecánicos, pilotos y autoridades certificadoras.

Intentamos resumirlo aquí debajo.

Las empresas que desarrollan las aeronaves eléctricas de aterrizaje y despegue vertical quieren transformar el mercado de la aviación. Muchos de estos aviones se diseñan para ser altamente automatizados, e incluso no tripulados.

Además, se pretende que estas aeronaves sean más baratas y silenciosas de operar que los aviones o helicópteros tradicionales. Y que puedan establecerse con ellas nuevos servicios, conocidos colectivamente como Movilidad Aérea Avanzada, que conectarían áreas urbanas y rurales, acelerarían la entrega de mercancías y proporcionarían transporte médico.

Continuar leyendo «Movilidad Aérea Urbana: ¿Y si certificar los eVTOL no fuera tan sencillo?»

PBY5 Catalina convertido en yate aeronavalterrestre

Extradós del ala del Catalina empleado como solarium.

El Consolidated PBY5 Catalina es mi avión favorito desde hace décadas… y muchas veces he soñado con que si fuera rico tendría uno convertido en una especie de auto-caravana volante, para poder viajar con calma y disfrutar de las vistas desde sus burbujas panorámicas. Y, como suele decirse, está visto que las grandes mentes piensan parecido… porque el ingeniero que trabajaba para Hughes, Glenn Odekirk, definiendo el H-4 Hércules y el H-1 tuvo exactamente la misma idea.

Continuar leyendo «PBY5 Catalina convertido en yate aeronavalterrestre»

Los Países Bajos publican su hoja de ruta para descarbonizar la aviación

Países Bajos ha publicado una hoja de ruta para descarbonizar sus vuelos. Vamos a intentar resumirla y comentarla.

Introducción

Situación actual

En 2020 el Reino de Países Bajos (Aruba, Curazao, San Martín y los Países Bajos) estableció unos objetivos para descarbonizar la aviación. Por ejemplo se marcó 2030 para que todas las operaciones terrestres estuvieran electrificadas, incluidos los vehículos de remolque. Para 2050 todos los vuelos de menos de 500km de radio que partieran de su territorio deberán ser también eléctricos.

Por las infraestructuras disponibles, es más factible realizarlo en el territorio continental. Sin embargo, teniendo en cuenta que el alcance de los aviones eléctricos de entre 9 y 19 pasajeros, para 2030, apenas será de unos cientos de kilómetros, los vuelos de enlace entre islas parecen ser los más idóneos para ser electrificados. Además se cree que podría abaratar los costes de los vuelos, así como mejorar la fiabilidad de los motores, y por tanto aumentar la disponibilidad de las aeronaves y bajar también los gastos de mantenimiento.

Continuar leyendo «Los Países Bajos publican su hoja de ruta para descarbonizar la aviación»