«Más alto, más rápido, más lejos» y, ahora, más verde. Primero mantenerse en el aire unos minutos. E ir ampliando la envolvente de vuelo poco a poco, con vuelos de más alcance, con cruces de estrechos, mares y océanos; con vuelos de mayor altitud, sobrevolando campos, ciudades y cordilleras.
Los aviones eléctricos y los de hidrógeno están ahora recorriendo el mismo camino que recorrieran desde 1903 los aviones con motores de combustión. H2Fly ha roto, en concreto, el récord de altitud de aeronaves de hidrógeno, sobrepasando los 7000 pies en un vuelo entre dos aeropuertos comerciales, Stuttgart y Friedrichshafen, cuando desplazó su aeronave cuatriplaza a la feria AERO. Durante el vuelo alcanzaron los 7230 pies con su HY4.
Este es un notable logro para H2FLY, ya que ningún otro avión de pasajeros propulsado por hidrógeno ha volado entre dos aeropuertos comerciales hasta la fecha. También estamos encantados de haber establecido lo que creemos que es un nuevo récord mundial al alcanzar una altitud de más de 7,000 pies con nuestro avión HY4. Queremos agradecer a nuestros socios desde hace mucho tiempo Aeropuerto de Stuttgart, Universidad de Ulm, DLR Stuttgart, Aeropuerto de Friedrichshafen, y AERO Friedrichshafen, por apoyarnos en nuestra misión de hacer realidad los viajes sostenibles».
Prof. Dr. Josef Kallo, co-founder and CEO of H2FLY
El avión HY4 es un demostrador tecnológico, en el que la empresa va integrando y probando las diversas soluciones. Pero la visión de futuro de la compañía es llegar a producir aerotaxis para 4-6 pasajeros y 500km de alcance, aviones de negocios para 19 personas y 1500km de alcance y aviones regionales para hasta 40 pasajeros y 2000km de alcance.
En estos días son numerosas las compañías que están presentando sus prometedores aviones a hidrógeno. Si bien la tecnología no es nueva, hasta ahora todas las empresas han fallado en lo básico: cómo almacenar el hidrógeno. APUSha presentado una solución que parece novedosa e interesante. Se aleja de los grandes depósitos cilíndricos dorsales o situados tras el pasaje, y opta por integrarlos en la estructura del ala.
La estructura del ala, multilarguero, está diseñada íntegra en fibra de carbono. Si bien las estructuras multilarguero no son novedosas, ni lo son las alas con depósitos de combustible integrados, sí lo es el utilizar cuatro largueros tubulares como depósitos de hidrógeno.
Los cuatro largueros-depósitos estarían presurizados, permitiendo por un lado soportar las cargas típicas de cualquier ala en vuelo y además transportar el hidrógeno, ahorrando espacio y peso, en comparación con otras aproximaciones tomadas hasta ahora para los tanques de hidrógeno.
Y éste es el diseño patentado por APUS que pretende montar en su familia de aviones, aún en desarrollo, que va desde el i2 cuatriplaza y bimotor hasta los más grandes para pasajeros, carga y banco de ensayos.
La empresa cuenta con certificado de DOA bajo EASA, con lo que espera poder certificar sus propios productos.
Estarán presentes en la próxima feria de ILA Berlín, y nosotros deseosos de ver lo que presentan y cómo evoluciona el proyecto.
Bombardier ha presentado hoy enEBACE su concepto de reactor de negocios EcoJet, un futuro demostrador.
El proyecto comenzó hace cuatro años, durante los cuales se ha trabajado en él en secreto.
No es el primer constructor que se apunta a este concepto, aunque sí es el primero que lo propone como reactor de negocios en lugar de como avión de pasajeros.
Con el EcoJet, Bombardier pretende probar distintas soluciones que reduzcan el consumo, con la participación de las universidades y actores industriales canadienses.
Esta configuración reduce mucho la resistencia, y por tanto el consumo. Y Bombardier pretende ensayar la propulsión híbrida con él. Rechazan la idea de la aviación eléctirca pura por el consabido problema de densidad energética de las baterías.
La posición de los motores, si bien tradicional en los reactores de negocios, tiene varias ventajas, como poder intercambiar con relativa facilidad el tipo de motor sin gran impacto en la estructura, o poder jugar con el concepto de ingestión de la capa límite para reducir más la resistencia.
Esperan, con el estudio de este demostrador, definir el avión de negocios del futuro.
La transición a unos aviones de bajas emisiones de CO₂ esperan lograrla basándose en cuatro puntos.
Tecnología: nuevas configuraciones de la aeronave, la introducción del hidrógeno y del combustible sostenible para aviación (SAF), la propulsión híbrida o el reciclaje.
Operaciones e infraestructura: no todas las mejoras pueden realizarse en las aeronaves. Se pueden realizar muchas mejoras en la forma de operar las aeronaves así como en las infraestructuras donde operan o con las que se le dan apoyo. Las innovaciones en los aeropuertos, en las rutas, en el mantenimiento y el servicio de las aeronaves se ensayaran en las nuevas instalaciones de Bombardier de Toronto Pearson International Airport, Mississauga.
SAF: Bombardier está trabajando en la implementación de este tipo de combustibles.
Este tipo de diseño han despertado siempre las mismas dudas: su escalabilidad, su presurización, falta de visión del exterior y las aceleraciones sufridas por los pasajeros que viajan cerca de las puntas de las alas.
En los aviones tipo tubo es relativamente sencillo hacer su evacuación rápida, al estar todos a la misma distancia de la pared, y por tanto de la salida.
Al crecer mucho este tipo de aeronave los pasajeros situados más al centro quedan lejos de cualquier puerta, lo que dificulta su evacuación en caso de emergencia. Eso mismo hace que los que están más al centro queden lejos de cualquier ventana.
El tema de las aceleraciones tiene que ver con los desplazamientos que se producen en el alabeo. En un tubo todos los pasajeros están cerca del eje central del avión, sobre el que rota en el alabeo. En un ala volante o en un BWB los más lejanos a esa línea experimentarían mayores desplazamientos y aceleraciones.
Sin embargo, al ser un avión de negocios su tamaño es relativamente contenido, el número de pasajeros mucho menor, y la disposición del espacio se puede arreglar de tal modo que los pasajeros queden en la zona más cómoda del avión y las zonas «accesorias» (oficina, bar, sala de reuniones) queden en las zonas más incómodas. De este modo se facilita la evacuación, y que los pasajeros vayan confortables durante las fases de más turbulencia.
En cuanto a la presurización, es sabido que es más sencillo presurizar una forma esférica o cilíndrica, apareciendo menos esfuerzos, por eso los tanques a presión tienen estas formas. Pero al ser un avión relativamente pequeño se puede obtener una zona elíptica central fácilmente presurizable.
Por todo esto pensamos que será mucho más fácil ver volar un avión de negocios con esta tipología que un avión de aerolínea.
Este último caso de los vuelos cortos ha sido por el que han apostado los de Harbour Air, con sus Beaver con motor eléctrico. Y la apuesta de Hawaiian Airlines en Hawai y de Elfly en Noruega.
Seaglider, el ekranoplano hawaiano
La aerolínea hawaiana firmó el día 11 de mayo un acuerdo con Regent, la empresa que está desarrollando el ekranoplano eléctrico. El modelo se llamaría Monarch y debería volar en 2028, con una capacidad de 100 personas.
Regent está trabajando actualmente en un modelo más pequeño, de 12 plazas y unos 300km de alcance, que debería volar en 2023 y entrar en servicio en 2025.
Los ekranoplanos son algo así como un cruce entre avión y barco. Vuelan a ras de la superficie, sin salir del efecto suelo, lo que reduce mucho su resistencia aerodinámica y por tanto el consumo, haciendo que sean menos exigentes los requisitos de almacenamiento de energía al necesitar menos para cubrir el mismo espacio. Y, como habíamos adelantado al comienzo, serían una apuesta de HawaiianAirlines para cubrir pequeñas distancias entre islas, utilizando puertos convencionales en lugar de aeródromos.
Además de volar en efecto suelo, el vehículo de Regent podría navegar como barco y deslizarse como hydrofoil.
Los problemas que presentan los ekranoplanos son los mismos que los relegaron originalmente al mar Caspio: con mala mar no vuelan. Aunque, posiblemente, en una mar que no pueda volar un ekranoplano tampoco pueda aterrizar un hidroavión.
El hidroavión eléctrico para noruega
Noruega tiene muchos fiordos, y muchas conexiones que son cortas de realizar por aire o mar, pero muy largas por carretera. Unas condiciones muy similares a las de Canadá con sus lagos o Hawai con sus islas. Por eso no sorprende que su planteamiento sea similar al de Harbour Air o Hawaiian Airlines, aunque la apuesta noruega sería una hidrocanoa bimotora eléctrica en lugar de reconvertir los venerables Beaver o apostar por algo tan novedoso como un ekranoplano: realizar enlaces de corta duración entre puntos geográficamente cercanos, pero sin comunicación por tierra, y utilizar los puertos convencionales y ya existentes en lugar de crear una red de aeródromos en un país en el que, dada su orografía, es difícil su desarrollo.
La hidrocanoa sería para 9 pasajeros y contaría con dos motores de 825kW, lo que le permitirían volar a una velocidad máxima de 300km/h. Además de su casco hidrodinámico y los flotadores de punta de plano, contaría con un tren de aterrizaje convencional para poder aterrizar en pistas en tierra firme.
Se espera que el primer vuelo sea en tres años, y que en 2030 existan en servicio entre 15 y 20 aparatos, gracias a la inversión de 16 millones de euros que ha realizado la Agencia noruega para la investigación. Por el momento, su casco se está ya ensayando en un canal de experiencias hidrodinámicas.
Nuestros comentarios
Sin números para poder juzgar su viabilidad económica y sin ser grandes apasionados de la movilidad aérea eléctrica, parece que al menos desde el punto de vista técnico sí sería viable, por el tipo de enlaces a realizar. Siempre hemos defendido que la aviación eléctrica no tenía sentido más que en caso de enlaces muy cortos, vuelos entre islas o similares, y tal vez la aviación recreativa. Falta por ver cómo solucionan el problema de la recarga.
De los distintos papers/hojas de ruta/notas de prensa que leo sobre «inventos» del futuro (transporte/motores/baterías/comunicaciones/etc) siempre me fascina el punto llamado «Aparición de tecnologías disruptivas».
La publicación mostrará muchos renders, infografías, números prometedores y neo-vocabulario: todo será verde, circular, sostenible, inclusivo y lo que os ocurra. Mostrará toda la tecnología actual que lo hace viable.
Habrá un punto por el que pase de puntillas: ese pequeño detalle técnico sin el que el invento no es viable, pero lo fía a que la aparición futura de una tecnología disruptiva lo hará viable.
Lo que me escama es are esos inventos verán la luz en cinco o diez años. Con lo que esa tecnología disruptiva TIENE que estar ya en laboratorio o, al menos, en investigación. No puede ser algo que aparezca en el noveno año y haga todo viables de golpe, porque…
…¡Esos diez años son los típicos que son necesarios para investigar + ensayar en laboratorio + encontrar cómo industrializar y además certificar para uso seguro y público!
Así que si depende de tecnología disruptiva pero ni la menciona, malo, es humo seguro.
¿Y lo que más me escama de todo? Que en prensa rara vez se hace este análisis del producto, se limitan a reproducir la nota de prensa o publirreportaje.