Gerfaut, el padre de los cazas franceses con ala delta

El ala delta en Francia está indiscutiblemente vinculada a Dassault. Sin embargo, antes de él, se estudió utilizando un avión que sigue siendo desconocido para el público en general: el Gerfaut, y acaba de celebrar los 70 años de su primer vuelo.

Este fue diseñado por Jean Galtier, en la empresa Arsenal, como una aeronave experimental a petición del gobierno, con el objetivo ulterior de convertirla rápidamente en una aeronave de serie para la intercepción. El contrato se otorgó en enero de 1953, para un interceptor ligero (menos de 4 toneladas), pero supersónico. Debía poder ascender a 15,000 metros en menos de 4 minutos.

Se basaba los Arsenal (o SFECMAS) 1301 y 2301. Planeadores para ensayar y entender el comportamiento de las alas supersóinicas. Ambos compartían fuselaje, aunque uno tenía el ala delta y el otro un ala en flecha convencional. Despegaban remolcados por DC-3, SNCAC Martinet o SNCASE SE.161 Languedoc. Fueron ensayados durante 1950 y 1951.

Luego vino el Gerfaut, o modelo 1400, cuyas versiones, del 1401 al 1405, diferían por su motor o ubicación de sus alas.

Muchos de los ensayos que se estaban realizando para aeronaves de alta velocidad estaban basados en estatorreactores. Pero los estatorreactores sólo empezaban a funcionar cuando la aeronave se encontraba ya volando a altas velocidades. Y los primeros turborreactores estaban algo limitados en cuanto al empuje que daban, por eso los primeros aviones a reacción como el famoso Messerschmitt 262 o el Heinkel 280 eran bimotores. Así que, ¿por qué no combinar ambos en una sola aeronave?

El 1401 era una combinación de turborreactor/estatorreactor de ala alta, el 1402 una combinación de turborreactor/estatorreactor de ala media, el 1403 idéntico al 1402 pero un motor de otra marca, el 1404 era de ala baja con la combinación de turborreactor y cohete y el 1405 una aeronave de ala baja y propulsada por un solo reactor, el ATAR 101.

Arsenal se convirtió en SFECMAS (Sociedad Francesa para el Estudio y Construcción de Equipos Aeronáuticos Especiales) en 1952, y luego fue adquirida por Nord Aviation el 1 de octubre de 1954, debido a la nacionalización.

El ala media del SFECMAS 1402A Gerfaut tenía una flecha positiva de más de 58°. El diminuto empenaje horizontal estaba situado alto, sobre el empenaje vertical, sin llegar a estar en T. Estaba motorizado con un solo motor ATAR 101C de 2300 kg alimentado por una entrada de aire frontal.


Voló por primera vez el 15 de enero de 1954 con André Turcat al mando. El 3 de agosto del mismo año, pilotado también por André Turcat,superaría Mach 1, durante un picado somero, sin usar postquemadores. Sería el primer avión francés con el ala en delta que superaría la barrera del sonido.

Solo se construyó una copia.

Ya como Nord, fue modificado como Nord 1402B o Gerfaut 1B. Este tenía un ala de envergadura extendida en un metro, y cambiaba su motor al más potente ATAR 101D-2 de 2800 kg. Su superficie alar aumentó de 19 a 26 metros cuadrados. Voló por primera vez el 27 de diciembre de 1954 en esta configuración, y rompería la barrera del sonido en vuelo nivelado.

La última versión fue el Nord 1405 Gerfaut II. Su estructura, así como sus alas, se refinaron aerodinámicamente, y se benefició de un motor ATAR 101G-1, aún más potente, de 3800 kgp, y luego de un ATAR 101G-2 de 4400 kgp. Voló por primera vez el 17 de abril de 1956, en manos de Michel Chalard. Con él, André Turcat rompió récords de velocidad de ascenso en febrero de 1957. Los 15,000 metros de altitud se alcanzarían en 3 minutos y 35 segundos. Además se le equiparía con un misil.

Una vez que se completaron las pruebas, se utilizó como banco de ensayos para probar el radar de intercepción Aladin.

Fuentes

Fortaleza volante para lanzar aviones a escala para ensayos supersónicos (Portaaviones aéreos 23)

Esta Fortaleza Volante es un PB-1 de la marina, un avión de combate marítimo que solía ir equipado con un gran radar bajo el fuselaje, para escanear la superficie, que ha sido reemplazado por una cogida para aviones a escala.

En concreto, el modelo ensayado es un F8F Bearcat reproducido a un 40% de su tamaño, utilizado para ensayar los efectos de la compresibilidad del aire al aproximarnos a la velocidad del sonido.

Según el boletín de la marina, la réplica podía alcanzar las 600mph tras ser soltada. Los ensayos se llevaban a cabo sobre la Estación Naval de Philadelphia. El avión a escala, hecho íntegramente en madera, no contaba con ningún tipo de motor. Tan solo un contrapeso, de 500 libras de plomo, instalado en el morro hacía que cayera y acelerara por efecto de la gravedad. El avión estaba equipado con controles automáticos, que lo sacaban del picado a una altitud de seguridad, y con un paracaídas, que permitía recuperarlo de una manera segura.

El fuselaje se dividía en tres secciones. La trasera, que contaba con los controles de vuelo, cuyo comportamiento se prefijaba en tierra. La de morro, con el contrapeso de plomo. Y la sección delantera, justo tras el morro, donde se instalaba toda la instrumentación de ensayos en vuelo y telemetría.

F8F Drop-Test Model, NASM

Fuentes

PB-1W «Flying Fortress» Carries a replica of an F8F Bearcat aloft for release in aerodynamic characteristics tests.

All Hands, The Bureau of Naval Personnel Information Bulletin. 1947

Vídeo: La toma de aire del F-15 en acción

La toma de aire de los motores del F-15 es móvil. De hecho, es bastante habitual que las tomas de los motores de los aviones supersónicos tengan algún modo de geometría variable para adaptarse al número de mach y de ese modo mejorar el rendimiento del motor, como por ejemplo moviendo el cono puntiagudo de algunas entradas para adaptar la onda de choque que se forma adecuadamente.

En el F-15, se estudió y se comprobó que haciendo que la entrada de aire se adaptara al número de Mach, a la temperatura del aire y al ángulo de ataque, podía mejorarse el rendimiento del motor.

Y había algún vídeo, como el que se encuentra bajo estas líneas, en el que podía verse cómo podía variar la geometría de esta toma. Pero en el vídeo que encabeza este artículo se puede ver con el avión en vuelo. Según el usuario de Twitter que lo ha dado a conocer, es una maniobra que conocen como «patada del delfín» y que se realiza durante los festivales aéreos precisamente para que los ojos más avispados puedan observarlo.

Falta saber qué opina de la maniobra el equipo de ingenieros que calculó los ciclos que aguanta la toma…

Miles M.52, el avión británico que pudo romper la barrera del sonido antes que el X-1

Visión artística del M.52, vía Wikipedia

En 1942, el Ministro del Aire y el Ministerio de Aviación se acercaron a Miles Aircraft con un contrato de alto secreto para un avión de investigación turborreactor diseñado para alcanzar velocidades supersónicas. El Miles M.52 fue diseñado para alcanzar una velocidad de 1000 mph a 36000 pies durante 1,5 minutos.

Durante los años 30 y cuarenta se había estado investigando una nueva forma de propulsión. La idea era dejar atrás las hélices y utilizar chorros de gases. Frank Whittle era el británico que trabajaba en el motor a reacción. En paralelo, Hans von Ohain en Alemania, Virgilio Leret en España y Secondo Campini en Italia, hacían lo propio.

Estos motores, al no llevar hélice, podrían volar mucho más rápido (la hélice limita la velocidad máxima que puede alcanzar una aeronave). Tan rápido que se esperaba que pudieran romper la barrera del sonido. Y para ello se diseñaría el M.52.

El diseño abría nuevos caminos en todas las áreas de la ingeniería aeronáutica. Las alas eran muy delgadas, de perfil bi convexo, y estaban diseñadas para quedar dentro del cono formado por las ondas de choque causadas por la puntiaguda nariz del avión.

Modelo de túnel de viento. Foto de Wikipedia

Para volar en régimen supersónico hay varias posibilidades, una es utilizar perfiles aerodinámicos, que se comportan horrorosamente mal en regímenes subsónicos. La otra, hacer volar un perfil subsónico. Y, justo detrás de una onda de choque, además de subir la presión y la temperatura, la velocidad del sonido vuelve a ser subsónica. Así que se pueden utilizar perfiles subsónicos siempre que vuelen dentro del cono formado por las ondas de choque. Por ese motivo los aviones supersónicos tienen alas muy cortas y con mucha flecha. Y morros muy puntiagudos. También por ese motivo se observan en las entradas de los motores conos o placas puntiagudas, para generar ondas de choque que ya pre-comprimen el aire, antes de entrar al propio compresor, y además baja su velocidad a régimen subsónico.

Maqueta de la cabina

El único tripulante iba alojado en el cono de morro, que a su vez actuaba de cápsula de evacuación, al ir unida al resto del fuselaje a través de una sección pirotécnica. Una vez separada del fuselaje, la cápsula descendería en paracaídas hasta una altitud segura. A partir de ahí el piloto debía abandonarla la cápsula en paracaídas por sus propios medios.

Motor W.2/700

El desarrollo del motor fue para Whittle. Utilizaría su W2/700 con poscombustión. Ese motor sería más tarde conocido comercialmente  como Rolls Royce Derwent.

El fuselaje se basó en la forma de las balas que las pruebas de disparo mostraron que viajaban a una velocidad supersónica. El ala tenía un borde de ataque parecido a una navaja, tan afilado que los mecánicos que se cortaban la apodaron Gillette

Dennis Bancroft, ingeniero aerodinámico de Miles
Maqueta a escala 1:1 del Miles M.52

Sin embargo, al final de la guerra, el Director de Investigación Científica, Sir Ben Lockspeiser, canceló el proyecto «… en vista de los peligros desconocidos cercanos a la velocidad del sonido… considerado imprudente proceder con los experimentos a gran escala». En realidad, a pesar del 90% del trabajo de diseño completado y con el 50% de la construcción terminada, el proyecto cayó en una medida de ahorro del Tesoro.

Los investigadores y diseñadores británicos lograron acercarse mucho a la barrera y bien podrían haber sido los primeros en romperla.

Gran Bretaña y EE. UU. llegaron a un acuerdo para intercambiar información y datos. Según Dennis Bancroft, jefe de aerodinámica de Miles, los ingenieros de la compañía estadounidense Bell Aircraft recibieron información detallada sobre el Miles M.52. Sin embargo, después de que los estadounidenses recibieron toda la información de los británicos, incumplieron el acuerdo. Los británicos no recibieron información a cambio. Parece ser que los diseños originales del empenaje del XS-1 eran convencionales, y finalmente se pasó al tipo de Miles, con todo el timón móvil.

Tras la cancelación del M.52, el Gobierno creó un nuevo programa que implicara «ausencia de peligro para los pilotos de prueba y economía de propósito». Se recortaban gastos, y se reducía el tamaño del vehículo, que pasaría a ser no tripulado y propulsado por cohetes, pasando a ser más un misil que una avión, o un avión no tripulado (UAV)

El Royal Aircraft Establishment fue responsable del desarrollo de un motor de cohete adecuado y a cargo del diseño de la aeronave estuvo Barnes Wallis de Vickers Armstrong, el padre de la bomba que rebota y la bomba sísmica Tallboy de 12000 libras.

Los UAV eran réplicas a escala 3/10 del M.52 y el primer lanzamiento del avión-cohete tuvo lugar el 8 de octubre de 1947.

Mosquito con un M.52 no tripulado en la panza. Foto de Wikipedia

Un De Havilland Mosquito de la RAF despegó el 8 de octubre de 1947, de St. Eval en Cornualles, con un avión-cohete en su panza. Pero su el motor explotó poco después del lanzamiento. Seis días después, Chuck Yeager rompió la barrera del sonido por primera vez en el Bell X-1, un avión que compartía muchas similitudes con el diseño británico. Después de la explosión del prototipo, y del éxito del XS-1, el Daily Express asumió la causa de defender la vuelta del programa M.52, pero fue en vano.

En octubre de 1948 se lanzó un segundo avión-cohete. Esta vez sí tuvo éxito y alcanzó Mach 1,38, (1.5 según otras fuentes) en un vuelo nivelado estable. Pero, en lugar de terminar su vuelo estrellándose contra el mar, como estaba previsto, el modelo ignoró los comandos de radio que se le enviaron y fue observado por última vez (en el radar) internándose en el Atlántico.

El toque final de ironía se produjo cuando se suspendieron incluso estas pruebas con cohetes, por «el alto costo y poco retorno». El dividendo total de esta inversión fue la información de que un modelo a pequeña escala del Miles M.52 había superado con éxito la barrera del sonido. Pero, el Reino Unido ya había perdido la oportunidad de ser la primera nación en lograr un vuelo supersónico pilotado.

Como era de esperar, las afirmaciones de la influencia británica en el icónico Bell X-1 son ampliamente disputadas en los EE. UU., y la historia generalmente la escriben los vencedores.

Tal vez con un poco más de financiación de este lado del Atlántico, el M.52 podría haber ganado la carrera por la barrera del sonido a Chuck Yeager y al X-1.

El avión

The Engineer recupera la descripción que hicieron del aparato n 1946, cuando por la cancelación del proyecto dejó de ser secreto. La reproducimos debajo.

Modelo a escala del M.52, The Engineer

A Miles Aircraft se le había encomendado la tarea de construir el M52 con motor turborreactor, que estaba destinado a volar a 1,000 mph y alcanzar una altura de 36,000 pies. Para lograr esto, los ingenieros de Miles idearon un diseño radicalmente distinto a todo lo que se conocía en la época.

Parecido a una bala alada, las dimensiones generales debían haber sido de 33 pies de largo y 27 pies de envergadura, siendo las alas algo más cortas que las de aviones de longitud similar.

Como un paso hacia la producción de una forma de ala que tenga una baja resistencia en el rango de velocidad supersónica y, sin embargo, permita un vuelo a baja velocidad con un buen control, Miles Aircraft Ltd diseñó un ala biconvexa, con bordes de ataque y de salida muy afilados.

Miles «Gillete», con alas y empenaje modificados

Este ala biconvexa se probó en un Miles Falcon estándar para demostrar la viabilidad del diseño a bajas velocidades. El motor, que huniera producido 17.000 HP en vuelo a toda velocidad, sería suministrada por Power Jets (Research and Development). Junto con el tanque de combustible y los controles de vuelo, el motor habría ocupado casi todo el fuselaje.

Miles Falcon Six con ala y emepane modificados, de perfil biconvexo, de madera

Se puede describir como una unidad de tres etapas, la primera etapa que consta de un motor a reacción ordinario con un compresor centrífugo. Los gases de este motor pasan a través de otro compresor,  trayendo un suministro adicional de aire, que se mezcla con la corriente principal. La mezcla luego pasa a través de un ‘athodyd’ (conducto aerotermodinámico), en el que se inyecta y quema el combustible, aumentando aún más la velocidad de los gases, que finalmente son expulsados por una tobera en la cola. El motor tiene 3.5 pies de diámetro y 23 pies de largo.

Con toda esa potencia a solo unos centímetros del piloto, así como las alturas extremas a las que operaría el M.52, no sorprende que se haya instalado un sistema de eyección. La cabina presurizada fue diseñada para ser separada por completo del fuselaje mediante la detonación de cargas de explosivo plástico en las estructuras tubulares que conectaban la cabina con el fuselaje. En teoría, la presión del aire obligaría a la cabina a alejarse del avión y un paracaídas lo ayudaría a descender gradualmente.

Una vez que la cabina había reducido la velocidad a una velocidad razonable y descendido a una altura designada, el piloto saltaría de la cápsula usando su propio paracaídas. Si todo iba bien, volvería a la Tierra en un avión completamente intacto. Aunque a velocidades tan elevadas que el aterrizaje suena casi tan aterrador como una eyección.

Para el tren de aterrizaje, se tuvieron que diseñar llantas y ruedas especiales, ya que la velocidad de toma probablemente habría sido de aproximadamente 170 mph, con una carrera de dos millas antes de detenerse. El peso total diseñado es de aproximadamente 8200 libras en el despegue, lo que da una carga alar de 58 libras por pie cuadrado.

Revista The Engineer, septiembre de 1946

Fuentes: como siempre, son varias las fuentes. Citamos las que parecen más estables. Avia Déjà Vu, Museum of Berkshire y The Engineer

¿Volaron los alemanes a más de Mach 1 en la Segunda Guerra Mundial?

Me 262 volando en formación con un caza supersónico

Hans Guido Mutke es uno de los pilotos que defiende que pudo haber superado la barrera del sonido en su Me-262 en 1945.

Mutke dice que no se dio cuenta de que había roto la barrera del sonido hasta 1989, cuando habló sobre su vuelo con expertos en una conferencia que marcaba el 50 aniversario de los vuelos a reacción.

La historia de Mutke ocurre el 9 de abril de 1945, un mes antes del final de la guerra. Volaba un Me-262 Weisse 9 (blanco 9) sobre Innsbruck, Austria, cuando escuchó que un Mustang estadounidense perseguía a un piloto alemán novato.

Quería ayudarlo, así que me piqué en un ángulo de 40 a 50 grados. Lo que sucedió a continuación nunca le había sucedido a otro piloto, ya que entré en un reino muy peligroso sin saberlo.

El avión comenzó a temblar dramáticamente y los controles dejaron de funcionar. Mutke recuperó el control de su avión cuando el velocímetro marcaba 1.100 km por hora.

No tenía idea de lo que estaba pasando. Pensé que había algo mal con el avión.

Más tarde, los ingenieros entendieron que tal sacudida y pérdida breve y luego recuperación del control eran características típicas de romper la barrera del sonido.

Hans Guido Mutke

Lo que describe Mutke es compatible con haber superado la barrera del sonido. Normalmente los aviadores que se atrevían a acercarse a la barrera del sonido salían mal parados, con un avión que se rompía porque estructuralmente no era capaz de soportar los esfuerzos devenidos de la gran resistencia aerodinámica generada por las ondas de choque. Los primeros que pudieron pasar la barrera del sonido describían un proceso similar. Al aproximarse a la barrera del sonido el avión se sacudía, y al superar Mach 1 el avión continuaba volando normalmente. Y así se lo hicieron saber alguno de los asistentes a aquella conferencia: de ser cierta la historia, podría haber sido el primero en superar la barrera del sonido, en picado. Aunque también podrían ser vibraciones inducidas en la estructura por la alta velocidad y que cesaron al salir del picado. No obstante, Mutke insistía que el indicador de velocidad llegaba a los 1100km/h, más allá de la línea de los 950km/h que marcaba la velocidad a nunca exceder (VNE).

Dudas de una vieja leyenda

Heinrich Beauvais, autor de German Secret Flight Test Centres to 1945, es uno de los que participó en esa discusión de 1989. Un legendario piloto de pruebas, Beauvais voló una amplia gama de aviones militares desde 1935 hasta 1945. También el Me-262.

Entrevistado en una residencia de ancianos, a los 93 años, decía que «Toda la historia es muy poco probable. Es muy poco probable que haya atravesado la barrera del sonido». Beauvais dijo que el Me-262 era el mejor avión que tenían los alemanes en ese momento, pero que la historia de Mutke presentaba incongruencias en cuanto a las altitudes y velocidades de vuelo y de picado. Luego citó a Yeager diciendo que no habría sabido que había superado la velocidad del sonido sin un velocímetro.

Los que dicen que sí es posible

Sin embargo, alguna evidencia sugiere que el Me-262, incluso si no se diseñó para romper la barrera del sonido, sí habría podido superarla en picado, teniendo en cuenta que la velocidad del sonido varía con la densidad del aire y su temperatura, y por tanto es mucho menor a gran altitud que a nivel del suelo.

Una de esas evidencias sería el manual del piloto Me-262 de enero de 1946 que hizo la USAF para sus pilotos de ensayo que volaban el avión capturado a la Luftwaffe.

A velocidades de 950 a 1 000 km/h, el flujo de aire alrededor de la aeronave alcanza la velocidad del sonido y se informa que las superficies de control ya no afectan la dirección del vuelo.

También se informa que una vez que se supera la velocidad del sonido, esta condición desaparece y se restablece el control normal.

(no hemos podido encontrar este manual y sólo citamos lo que dice de él una de las fuentes, si algún lector lo ha podido verificar, nos puede escribir en el email que aparece en la sección de contacto)

El profesor de la Universidad Técnica de Munich,Otto Wagner realizó una simulación por ordenador y concluía que el Me-262 podría superar Mach 1 en picado, aunque no descartaba que fueran vibraciones propias de la alta velocidad. «No quiero excluir la posibilidad [del Mach 1]», dijo. «Pero puedo imaginar que también pudo haber estado justo por debajo de la velocidad del sonido y sintió los golpes, pero no superó Mach 1».

Los constructores de varias réplicas funcionales del Me-262 en USA también apoyaban la historia de Mutke. «Nos reunimos con Herr Mutke y después de escuchar su historia, creemos que podría haber logrado durante el gran picado en el que se le incendió uno de los motores», dijo Jim Byron del Proyecto Me-62 en Everett, Washington.

Los nuevos aviones tendrán motores diferentes a los Jumo 004 originales, por lo que no responderán de manera concluyente a la pregunta de si Mach 1 era posible en 1945.

Largo silencio

Lo que dificulta la aceptación de la historia de Mutke es su largo silencio, que dice que surgió del miedo a su oficial al mando cuando aterrizó con un avión maltrecho ese día.

Cuando aterricé, el comandante estaba furioso y exigió saber qué había hecho con el avión y exigió saber si había superado la marca roja de 950 km.

‘Por supuesto que no. Ya sabes, esto podría haberse fabricado en lunes’. (Eso significa que se hizo el día después de que los trabajadores hubieran estado de descanso y asumiendo que bebiendo dijo refiriéndose a su avión abollado)

Mutke

Es cierto que USA mantuvo en secreto el vuelo de Yeager durante algunos años pero, a diferencia del de Mutke está bien documentado. «Mi prueba es que aunque el velocímetro se detuvo en 1.100 km, el avión recuperó el control y pudo seguir volando», respondía Mutke.

En cualquier caso, y como ya dijimos en la discusión Yeager-Welch, es posible que no solo Mutke superara la velocidad del sonido, puesto que los cazas a reacción alemanes ya la rozaban, y tal vez en algún picado pudieron superarla. Pero siempre sin registro del evento. Por otro lado, sigue siendo Yeager el primero en haber volado un avión puramente supersónico, y capaz de alcanzar y mantener la velocidad supersónica en un vuelo horizontal.

Otros candidatos a haber superado la barrera del sonido.

Otro piloto alemán, Heini Dittmar, voló el avión-cohete Me 163 Komet, que alcanzaba velocidades muy próximas a la del sonido. Dittmar asegura haber vivido experiencias similares a las relatadas por Mutke, y que son las que preceden a superar la barrera del sonido.

Lothar Sieber, otro piloto alemán, pudo haber sido la primera persona en romper la barrera del sonido el 1 de marzo de 1945 cuando probó el avión-cohete-interceptor de punto experimental Bachem Ba 349 Natter. El vuelo duró solo 55 segundos pero Sieber y su avión se estrellaron. Sieber murió y el Natter quedó totalmente destruido. Una vez más falta lo más importante: no hay registros.

Fuentes: News 24 y Aeroseum, entre otras muchas, pero parecen los enlaces más estables.