Y catorce años después…el VTOL «Ares» de Piasecki ha volado

Concepto de módulo VTOL multipropósito «ARES» de Piasecki, en 2014

Conocimos el conceto ARES (Aerial Reconfigurable Embedded System) de Piasecki allá por 2012, cuando era una especie de HUMVEE con alas en tándem y cuatro hélices entubadas, cuando DARPA tenía un proyecto llamadol Transformer TX para desarrollar un «jeep volador».

En 2014, tras la cancelación del programa, se decidió reutilizar parte del concepto como una célula no tripulada de carga, capaz de llevar todo tipo de cápsulas, desde contenedores de transporte a vehículos militares, no perdiendo del todo su función de coche volador.

El concepto es similar al que presentara en su día Airbus+Ital Design+Audi. Un módulo terrestre intercambiable, y un módulo aéreo con rotores basculantes y capacidad VTOL. El módulo terrestre bien puede ser un contenedor de carga, uno de pasaje, o un vehículo terrestre, como aún muestran algunos vídeos de Piasecki. Bien podría considerarse dentro de nuestra serie de aeronaves con cabinas desmontable.

El año pasado anunciábamos que había ganado un contrato por valor de 37 millones de dólares para continuar su desarrollo y hacerlo volar, alimentado por un sistema de células de hidrógeno que debería propulsar los desarrollos de la compañía, incluido su helicóptero PA-890, del que también hablamos en este blog.

Y por fin, 14 años después de la concepción del proyecto, el ARES ha volado, porfin.

El módulo de vuelo ARES-DV despegó del helipuerto oeste de Piasecki en Essington, Pensilvania, el viernes 6 de septiembre, y realizó un vuelo estacionario de aproximadamente un minuto de duración antes de descender.

Tras la toma, el equipo acopló el Módulo Móvil de Misiones Múltiples (M4) del US Army al ARES-DV y realizó con éxito un segundo vuelo estacionario de un minuto, demostrando la capacidad de su sistema de control de vuelo triplex fly-by-wire para mantener un vuelo estacionario estable en múltiples configuraciones y en un entorno terrestre dinámico.

Según la nota de prensa, ARES es un vehículo modular VTOL multimisión que puede funcionar como sistema aéreo no tripulado (UAS) o con un módulo de vuelo tripulado opcional. Los módulos transportables pueden variar desde el ya citado tripulado a módulos de carga, vehículos o módulos para proporcionar apoyo C4I, ISR, de combate y logístico multimisión integrado a fuerzas de combate pequeñas y distribuidas que operan a grandes distancias y en terrenos complejos. Los módulos de carga útil de misión rápidamente reconfigurables se apoyan en un módulo de vuelo común para ofrecer flexibilidad multimisión con una huella y un coste logísticos generales significativamente reducidos.

Primer vuelo del ARES.

ARES incorpora el sistema Compact Fly-By-Wire de Honeywell Aerospace, un sistema de control de vuelo integrado que es ligero y robusto. Diseñado para caber en el espacio limitado disponible en aviones más pequeños, este sistema de última generación proporciona capacidades de control de vuelo críticas para la seguridad que normalmente se encuentran en aviones de pasajeros mucho más grandes y aviones de combate avanzados.

Farnborough: Motores Kawasaki de 120 a 1340CV para aviones

Kawasaki tiene una larga tradición aeronáutica, aunque generalmente sea más conocida por sus motos.

Tampoco es nuevo el empleo de sus motores para motocicleta en aeronaves, aunque en general ha quedado restringido su uso a aeronaves de construcción experimental y amateur.

Por eso tal vez no fue sorprendente la unión de Kawasaki con VoltAero para que ésta última empleara el motor Ninja H2 en su aeronave Cassio.

Y ayer, en Farnborough, en una conferencia de prensa conjunta ambas han anunciado sus planes de expansión en el mercado de los motores aeronáuticos con una gama de propulsores capaces de funcionar con combustible de aviación, SAF, biocombustibles e incluso hidrógeno.

Motor de seis cilindros y 4.5 litros mostrado en el stand de VoltAero stand. (Stephen Bridgewater/RAeS)

Kawasaki pretende fabricar motores alternativos con un peso casi idéntico al de motores turboeje similares, pero con una reducción del consumo de combustible de entre el 30 y el 50%. Interesante, teniendo en cuenta que a partir de ciertas potencias se abandonó el uso de motores de pistón a favor de las turbomáquinas (turboejes, turbohélices, turborreactores y turbofanes, en función de la velocidad de vuelo, para optimizar su redimiento) debido a que a igualdad de potencia, el motor alternativo pesa más que el de turbina.

Kawasaki quiere combinar la experiencia adquirida en la colaboración con VoltAero y su propio proyecto para crear una moto con motor alimentado por hidrógeno, la Ninja H2 HySE que se exhibía en el stand de VoltAero), creando una nueva división que desarrolle motores de pistón aeronáuticos.

Los motores propuestos son:

  • 4 cilindros de 1,0 litros que desarrolla 120 CV como motor atmosférico y 235 CV si lleva turbo
  • 6 cilindros y 2,1 litros (245 CV atmosférico o 375 CV con turbo)
  • 6 cilindros de 4,5 litros (400 CV atmosférico o 670 CV con turbo)
  • 12 cilindros de 9,0 litros (800 CV atmosférico o 1.340 CV con turbo)

La empresa tiene previsto suministrar la primera unidad a los clientes en 2025, y espera obtener la certificación de tipo en 2030. Pero todos esos motores los pretende desarrollar también alimentados por hidrógeno,. Espera tener las primeras variantes propulsadas por hidrógeno en 2029 y obtener la certificación en 2035.

Creemos que los motores alternativos presentan muchas ventajas y tienen un gran potencial, especialmente cuando se trata de conseguir la neutralidad de carbono en la aviación.

director general de Kawasaki
Motor de Kawasaki de seis cilindros mostrado en el stand de VoltAero en Oshkosh 2023

Una vez que se llega a un megavatio, un motor de turbina simplemente no puede ser competitivo en términos de coste, emisiones y consumo. Así que, hoy por hoy, creo que lo que estamos viendo es el principio de un cambio de juego.

Jean Botti, de VoltAero

Por cierto, también esta semana —el 22 de julio— hacía Kawasaki una demostración pública de una moto de hidrógeno en el circuito de Suzuka.

Fuentes:

El prototipo híbrido hidrógeno-eléctrico de Joby completa un vuelo de 840km

Joby es una empresa estadounidense líder en el sector de los eVTOL de movilidad aérea urbana. Y digo líder porque es una de las que más avanzado lleva el diseño, los ensayos y la certificación.

Su aeronave, además, es relativamente creíble, dentro de lo críticos que sabéis que somos con este tipo de aviación. Sólo utiliza los rotores basculantes para el despegue vertical, dependiendo la sustentación del resto del vuelo de un ala fija, lo que hace que —comparativamente con otras aeronaves de la nueva movilidad aérea— tenga mayor autonomía.

No obstante, al ser eléctrica sigue teniendo el mismo problema que todas las demás aeronaves eVTOL: su reducida autonomía, y por tanto su aplicabilidad al mundo real, donde para transportar pasajeros necesitas tener un remanente de autonomía para desviarse a un alternativo si en el destino hay problemas.

Posiblemente tras descubrir esto, y con criterio, Joby decidió adquirir hace unos años H2Fly, su equivalente en el mundo del hidrógeno y habitual en este blog, la más avanzada en el desarrollo de aeronaves de pila de hidrógeno.

Para este vuelo de aeronave eVTOL con hidrógeno ha fusionado los dos productos: su desarrollo de eVTOL eléctrico, que lleva volando y realizando ensayos una buena temporada, con el desarrollo de pila de hidrógeno de H2fly. Al ser un avión movido por baterías, sustituir el origen de la electricidad por la pila de hidrógeno ha sido sencillo. Y el resultado ha sido positivo, con un vuelo de más de 800 kilómetros de alcance, quedando un remanente de un 10% de batería en el aterrizaje. Sería interesante conocer cuál es la autonomía de la aeronave si se tuvieran en cuenta las reservas, obligatorias por ley para desvíos, a alternativos.

Por cierto, para el desarrollo de su variante autónoma ha optado por la misma estrategia que con el desarrollo eléctrico y ha comprado a XWing, también líder en este tipo de desarrollos y vieja conocida del blog por volar Cessnas sin piloto.

Recordamos que el primer avión tripulado a hidrógeno voló en fecha tan temprana como 1955, que en los 80 lo haría el primer avión de aerolínea modificado para volar con hidrógeno, y que en 2009 volaría en España el primer avión tripulado con motor eléctrico y pila de hidrógeno.

Vamos con su nota de prensa:

Nota de prensa

  • El programa de hidrógeno-eléctrico se basa en la tecnología desarrollada por H2FLY, filial de Joby desde que la adquiriera en 2021, y forma parte del núcleo de la aeronave VTOL de Joby.
  • Durante el vuelo, la única emisión ha sido agua, resultado de la combinación del hidrógeno con oxígeno en la pila de combustible para obtener electricidad.
  • El vuelo, dice Joby, demuestra el potencial de la aeronave para realizar vuelos regionales sin emisiones.
  • El proyecto de Joby cuenta con el apoyo del programa Agility Prime de la USAF

El 24 de junio de 2024, la aeronave de demostración de tecnología de hidrógeno y electricidad de Joby completó un vuelo de840 km sobre Marina, California, sin más emisiones en vuelo que el agua.

Joby Aviation, Inc. anunció en nota de prensa el 11 de julio que ha realizado con éxito un vuelo de 840 kmg con su prototipo de aeronave eVTOL híbrida hidrógeno-eléctrica.

La aeronave, que despega y aterriza verticalmente, se basa en el exitoso programa de desarrollo de taxis aéreos eléctricos a batería de Joby, y demuestra el potencial del hidrógeno para realizar viajes regionales sin emisiones que no requieran una pista de aterrizaje.

El histórico vuelo de prueba, que se considera el primer vuelo de un avión de despegue y aterrizaje vertical propulsado por hidrógeno líquido, se realizó el mes pasado con un prototipo de Joby de preproducción, equipado con un depósito de hidrógeno líquido y un sistema de pilas de combustible. Aterrizó con un 10% de la carga de hidrógeno restante.

El demostrador de hidrógeno-eléctrico de Joby forma parte del futuro programa tecnológico de la empresa y es el resultado de varios años de colaboración entre un pequeño equipo de Joby y H2FLY, la filial propiedad de Joby con sede en Stuttgart (Alemania). El avión reconvertido completó previamente más de 25.000 millas de pruebas como avión eléctrico de batería en la base de Joby en Marina, California.

Utilizando el mismo fuselaje y la misma arquitectura general que el avión eléctrico de batería principal de Joby, este demostrador cuenta con un depósito de combustible de hidrógeno líquido, diseñado y construido por Joby, que almacena hasta 40 kilogramos de hidrógeno líquido, junto con una masa reducida de baterías. El hidrógeno se introduce en un sistema de pila de combustible, diseñado y construido por H2FLY, para producir electricidad, agua y calor. La electricidad producida por la pila de combustible de hidrógeno alimenta los seis motores eléctricos del avión de Joby, mientras que las baterías proporcionan energía adicional principalmente durante el despegue y el aterrizaje.

El equipo H2FLY de Joby utilizó una tecnología similar para realizar otro vuelo récord en septiembre de 2023, cuando volaron en el primer vuelo pilotado del mundo de un avión convencional eléctrico de hidrógeno líquido utilizando su tecnología de pila de combustible.

Viajar en avión es fundamental para el progreso humano, pero tenemos que encontrar formas de hacerlo más limpio. Con nuestro taxi aéreo eléctrico a batería a punto de cambiar radicalmente nuestra forma de movernos por las ciudades, nos entusiasma estar construyendo ahora una pila tecnológica que podría redefinir los viajes regionales utilizando aviones eléctricos de hidrógeno.

Imaginen poder volar de San Francisco a San Diego, de Boston a Baltimore o de Nashville a Nueva Orleans sin necesidad de ir a un aeropuerto y sin más emisiones que el agua. Ese mundo está más cerca que nunca, y los progresos que hemos hecho hacia la certificación de la versión eléctrica de batería de nuestro avión nos dan una gran ventaja de cara a hacer realidad el vuelo eléctrico de hidrógeno.

La gran mayoría del trabajo de diseño, pruebas y certificación que hemos completado en nuestro avión eléctrico de baterías se traslada a la comercialización del vuelo eléctrico de hidrógeno. En servicio, también esperamos poder utilizar las mismas pistas de aterrizaje, el mismo equipo de operaciones y el software ElevateOS de Joby que apoyará la operación comercial de nuestro avión eléctrico de batería

JoeBen Bevirt, fundador y consejero delegado de Joby

Como parte del compromiso más amplio de Joby de liderar el desarrollo de nuevas tecnologías aeronáuticas, recientemente adquirió Xwing Inc, líder del sector en el desarrollo de tecnología autónoma para la aviación. Xwing lleva volando aviones autónomos desde 2020, con 250 vuelos totalmente autónomos y más de 500 aterrizajes automáticos realizados hasta la fecha, utilizando el software Superpilot que ha desarrollado internamente.

Joby planea iniciar operaciones comerciales tan pronto como 2025, utilizando su taxi aéreo eléctrico a batería. La empresa cotiza en la Bolsa de Nueva York y ha obtenido más de 2.000 millones de dólares de financiación hasta la fecha, incluidas inversiones de Toyota, Delta Air Lines, SK Telecom, Uber y Baillie Gifford.

Beyond Aero presentó en EBACE su diseño de avión de negocios de pila de hidrógeno

Beyond aero, la empresa francesa que puso en vuelo el primer avión tripulado francés alimentado por hidrógeno, ha anunciado que su siguiente paso es mucho más ambicioso, y en vez de crear un ULM/VLA van a ir a por un reactor de negocios.

La startup Beyond Aero realizó su debut en EBACE, presentando su ultraligero propulsado por hidrógeno, el muy modificado ultraligero francés G1 Aviation del que os hablamos hace unos meses, junto con mucho material gráfico de lo que pretenden que sea su siguiente desarrollo: un avión de negocios de pila de hidrógeno para de 8 a 12 personas.

El avión, más similar al que presentaron en prensa en 2023 que el ultraligero G1. recibe el nombre de Beyond Aero One y pretenden que entre en servicio alrededor de 2030.

Beyond Aero ya ha logrado mucho, habiendo modificado y probado el ultraligero, al que llama Bleriot en honor al aviador francés pionero, para demostrar que su tecnología es viable. Pero no es lo mismo obtener la certificación para un avión como aeronave experimental monoplaza, que desarrollar y certificar una aeronave dedicada al transporte de pasajeros, cuyos requisitos de seguridad son mucho más elevados que los del primero, por la propia naturaleza de la misma aeronave: no es lo mismo operar comercialmente con pasajeros dentro que una aeronave de experimentación con 1 solo tripulante.

Ultraligero G1 modificado, al que llaman Bleriot

En el avión experimental, un ala alta que traza sus orígenes en la Zenair 701, la empresa reemplazó el motor de gasolina por un sistema de propulsión híbrido compuesto por baterías que proporcionan una potencia máxima de 40 kW y una pila de combustible de hidrógeno que genera hasta 45 kW. La configuración tiene la celda de combustible sujeta al asiento del copiloto y es alimentada por tres tanques de hidrógeno ubicados en el maletero, tras los asientos. El hidrógeno lo almacena en forma gaseosa, en tres depósitos de 340 bares.

Beyond Aero se enfrenta al largo y complejo proceso de desarrollo y certificación del avión comercial que nace de una hoja en blanco, y que pretenden que tenga un alcance de 800 nm (1.482 km). Aún se encuentra en las primeras etapas de desarrollo, pero según las infografías mostradas preternden llegar a tener una familia de aeronaves, mediante el conocido sistema de alargar el fuselaje añadiendo rodajas.

Los compradores potenciales han expresado interés en pedidos que la empresa valora en 646 millones de dólares.

Recordamos que el primer avión tripulado a hidrógeno voló en fecha tan temprana como 1955, que en los 80 lo haría el primer avión de aerolínea modificado para volar con hidrógeno, y que en 2009 volaría en España el primer avión tripulado con motor eléctrico y pila de hidrógeno.

Universal Hydrogen ensaya con éxito una pila de hidrógeno de 1MW

Aunque Estados Unidos y Boeing no hayan apostado tan fuerte por el hidrógeno como Europa y Airbus, hay empresas estadounidenses muy interesadas por esta tecnología.

Una de ellas es Universal Hydrogen, que está desarrollando una pila de hidrógeno líquido que podría propulsar los turbohélices monomotores que ahora usan motores de hasta 1340CV (=1MW).

Por eso su primer objetivo es un kit de conversión (o de retrofit) para aeronaves regionales existentes, comenzando como el ATR72 y el De Havilland Canada Dash.

Ese kit consiste en un motor eléctrico y una pila de hidrógeno que reemplaza a los motores turbohélices habituales. Y, por supuesto, unos depósitos de hidrógeno líquido que permitan alimentar esta pila. Los depósitos que propone Universal Hydrogen con su patente son modulares, e irían montados en la parte trasera del fuselaje, limitando por tanto su capacidad de carga.

La idea de estos depósitos modulares es facilitar la logística del hidrógeno, transportando en ellas el combustible desde las plantas de producción hasta la aeronave, en el aeropuerto.

Al proporcionar tanto una solución de conversión de aeronaves para la flota existente como una oferta de servicios de combustible directamente a las aerolíneas regionales, quieren entrar en servicio de pasajeros con cero emisiones para el 2025 y en servicio de carga poco después. Aunque, desde nuestro punto de vista, sería mucho más sencillo justo al contrario.

El siguiente objetivo son los aviones de pasillo único.

La mayoría de las emisiones de la aviación son producidas por la flota de pasillo único (también conocida como narrow body), dominada por las familias de aviones Boeing 737 y Airbus A320.

Tanto Boeing como Airbus están desarrollando sustitutos para estos venerables modelos para entrar en servicio a mediados de la década de 2030.

Posiblemente, la mejor forma en que la aviación puede cumplir con los objetivos de emisiones del Acuerdo de París es convertir la flota de pasillo único al hidrógeno.

Y por eso Universal, si logra que su producto funcione con su propuesta regional, quiere estar presente en este otro sector como suministrador de hidrógeno verde. E incluso realizando retrofits a sus aeronaves con sus tanques de hidrógeno modulares aunque, como vemos en las imágenes que están sobre estas líneas, esta solución de diseño ocuparía parte del fuselaje destinada a pasaje. Pero, como ya sabemos, uno de los problemas que tiene el hidrógeno es que aún no se ha encontrado la forma eficaz de almacenarlo

Y, claro está, no quieren cerrarse al mundo de los eVTOL ni de otros medios de transporte.

Nota de prensa

MOJAVE, California 27/02/2024 – (BUSINESS WIRE) – Universal Hydrogen Co. anunció hoy que ha logrado hacer funcionar con éxito un tren motriz de celda de combustible de clase megavatio utilizando su módulo de hidrógeno líquido patentado para suministrar el combustible. «Este es el tren motriz de celda de combustible más grande que haya funcionado con hidrógeno líquido», dijo Mark Cousin, presidente y director de tecnología de la compañía, «lo que lo convierte en otro de una serie de ‘primeros’ para Universal Hydrogen». El módulo de hidrógeno líquido alimentó la plataforma de prueba en tierra «iron bird» de la empresa durante más de 1 hora y 40 minutos, simulando un perfil de vuelo de aeronave regional. El iron bird es un análogo funcional del tren motriz que Universal Hydrogen ha estado probando en vuelo desde marzo de 2023. El módulo de hidrógeno líquido de la compañía contiene combustible para alimentar el iron bird durante más de tres horas a plena potencia, con dos de estos módulos suficientes para 500 millas náuticas de alcance utilizable (además de las reservas) para un avión regional ATR72. Esta demostración, llevada a cabo en el Mojave Air & Space Port, es la primera vez que el módulo y el tren motriz de la compañía se han integrado, marcando otro logro significativo en el camino hacia la entrada en servicio de pasajeros prevista para 2026.

Desarrollado en el centro de ingeniería y diseño de Universal Hydrogen en Toulouse, Francia, el módulo de hidrógeno líquido es el núcleo de la oferta de servicios de combustible de la compañía para la aviación. Internaliza toda la complejidad de gestionar hidrógeno criogénico, mientras presenta externamente una interfaz de contenedor simple compatible con el equipo existente de manipulación de carga intermodal de mercancías y aeropuertos. El módulo contiene ~200 kilogramos de hidrógeno líquido y es capaz de almacenarlo durante largos períodos sin evaporación. El módulo contiene sistemas para convertir el hidrógeno líquido criogénico en hidrógeno gaseoso cálido que es consumido por el tren motriz. También incorpora características como detección de fugas de hidrógeno y sistemas de ventilación para operaciones seguras, así como una conexión rápida a prueba de fugas para una instalación y extracción sencillas del módulo desde la aeronave.

«Esta demostración de extremo a extremo de una molécula de hidrógeno moviéndose desde nuestro llenador/dispensador hacia nuestro módulo de almacenamiento y luego hacia nuestro tren motriz es la primera vez que todas las piezas de nuestro portafolio de productos para la aviación regional se han unido», dijo Paul Eremenko, cofundador y director ejecutivo de Universal Hydrogen. «El siguiente paso es actualizar nuestra plataforma de pruebas de vuelo para volar el tren motriz alimentado por nuestros módulos».

La demostración de hoy se produce después de la demostración de Universal Hydrogen en las últimas semanas de otro caso de uso para su tecnología modular de abastecimiento de combustible, un cargador de hidrógeno para equipos de soporte en tierra del aeropuerto. La compañía también anunció recientemente la contratación de Stasy Pasterick como directora financiera.