¿Cómo refrigerar un vehículo hipersónico? Haciéndolo sudar.

Los investigadores de RTX validan la «refrigeración por transpiración» en una prueba para DARPA.

Tras la barrera del sonido está la barrera del calor. De sobra son conocidos los problemas de algunas de las aeronaves más rápidas porque en frío «sudan» combustible, y hasta que no han calentado sus materiales por la fricción con la atmósfera y éstos no se han dilatado no se sellan las juntas entre los paneles. También es conocido los problemas de temperatura en el parabrisas del SR-71 o del X-15. Pues imaginad si quisiéramos volar aún más rápido.

Los misiles o los vehículos hipersónicos pueden desplazarse a través de la atmósfera a velocidades superiores a 5 veces la del sonido. Pero a esas velocidades, las cosas se calientan tanto que muchos materiales se derretirían. Y los que no se funden, se deforman mucho.

«Pasas de algo afilado a algo más redondeado», dijo John Sharon del Centro de Investigación Tecnológica de RTX, «y cuando pasas de afilado a redondeado, aumentas la resistencia y terminas ralentizando el vehículo, lo que afecta a cuán rápido y lejos podemos volar».

La Agencia de Proyectos de Investigación Avanzada de Defensa (DARPA) quiere resolver ese problema, por lo que pidió a investigadores de todo el país sus ideas.

Sharon y su equipo tenían una idea simple pero intrigante: hacer que el misil sude.

Así como los humanos usamos los poros para enfriar nuestros cuerpos, el equipo buscaba demostrar que los poros artificiales, llamados canales de refrigeración por transpiración, en la punta del misil podrían hacer lo mismo.

«La refrigeración por transpiración ha existido durante años. La naturaleza ya lo ha descubierto: los árboles lo usan y nosotros usamos nuestra piel», dijo Sharon. «Pero, ¿cómo lo aprovechamos para otras aplicaciones de ingeniería?».

A DARPA le gustó la idea y otorgó al centro de investigación un contrato para modelar, prototipar y probar su concepto junto con otros equipos universitarios e industriales en el marco del programa MACH.

«Cuando surgió la oportunidad, hicimos algunos cálculos rápidos y dijimos: ‘¿Esto parece que funcionará?’ y la respuesta fue ‘Sí'», dijo Sharon. «Entonces fue realmente cuestión de profundizar y hacer una modelización y simulación detallada».

Su concepto funciona colocando un compuesto en la punta del misil que se calienta y genera vapor. El gas luego se empuja a través de miles de finos capilares de transpiración.

El prototipo de pruebas es una pieza en forma de cuña de metal resistente al calor y es ligeramente más grande que una tarjeta de crédito. Para hacer los canales de enfriamiento lo más pequeños y eficientes posible, el equipo de Sharon colaboró con Collins Aerospace, una empresa de RTX, utilizando su experiencia en micromecanizado, un método avanzado de fabricación que utiliza láseres para crear piezas intrincadas.

Para demostrar que funcionaría, el equipo primero probó la cuña en un dispositivo quemador en el centro de investigación en East Hartford, Connecticut.

«Básicamente, es una gran antorcha de crème brûlée», dijo Sharon.

El dispositivo de quemador dirige una antorcha alimentada con gas natural y oxígeno hacia el prototipo de pruebas para imitar los cambios de temperatura que ocurrirían a velocidades hipersónicas. Una vez que el equipo tuvo confianza en el rendimiento del prototipo, realizaron pruebas más detalladas en una instalación que utiliza un arco eléctrico para calentar y expandir gases a altas temperaturas y velocidades, simulando las condiciones de vuelo muy rápido.

Los ensayos ofrecieron resultados preliminares de que el concepto funcionaría, pero Sharon dijo que necesitarán más investigación y mejoras antes de que la refrigeración por transpiración esté lista para ser utilizada en misiles hipersónicos. Los desafíos restantes incluyen descubrir cómo hacer que los canales sean aún más pequeños y determinar si sus hallazgos en un prototipo del tamaño de una tarjeta de crédito son escalables a un vehículo hipersónico de tamaño completo.

Sharon dijo que cree que lo que han aprendido podría tener aplicaciones para varios productos de RTX, incluyendo la refrigeración de las palas de la turbina de los motores de las aeronaves, y demostró que su modelización predictiva era fiable.

«Cuando vuelas a más de cinco veces la velocidad del sonido, la temperatura puede aumentar muy rápidamente, en una fracción de segundo», dijo Sharon. «Las personas del equipo involucradas en la modelización hicieron un trabajo increíble estimando cuánto tiempo sobreviviría el prototipo».

Encontrar respuestas a preguntas como esta es por lo que Sharon se unió al centro de investigación. Después de obtener su doctorado, lo vio como una oportunidad para aplicar investigaciones de vanguardia en la industria aeroespacial y de defensa.

«Demostrarlo en el laboratorio ha sido genial», dijo. «El siguiente paso siempre es tratar de decir: ‘¿Cómo podría un cliente adaptar esto y rendir mejor?'»

Fuentes: RTX, vía Space Daily

El dirigible del Co-fundador de Google tiene luz verde de la FAA para el primer vuelo

Sergey Brin, co-fundador de Google, fundó LTA (lighter than air) Research con intención de crear dirigibles que pudieran transportar personas o bienes en zonas remotas con malas comunicaciones y/o en caso de desastres naturales.

LTA ha estado diseñando y construyendo este dirigible de última generación en los últimos años. Su estructura está formada por mamparos de titanio y barras de fibra de carbono, y estará propulsado por 12 motores eléctricos.

Y gracias a IEEE sabemos que la FAA le ha concedido en septiembre un certificado de aeronavegabilidad especial, lo que significa que en breve empezará los ensayos en vuelo.

El certificado permite a LTA volar el Pathfinder 1 dentro de los límites de Moffett Field y el espacio aéreo del vecino aeropuerto de Palo Alto, a una altura de hasta 460 metros (1500 pies). Esto le permitirá aventurarse sobre el sur de la Bahía de San Francisco, sin interferir con los aviones que entran o salen de los aeropuertos comerciales de San José y San Francisco International.

El enorme dirigible inicialmente estará sujeto a un mástil de amarre móvil para pruebas en tierra al aire libre, antes de realizar 50 horas de vuelo a lo largo de unos 25 vuelos.

Doce motores eléctricos distribuidos en los laterales y la cola del dirigible impulsarán al dirigible, que alcanzará velocidades de hasta aproximadamente 120 kilómetros por hora. Una resistente capa de material laminado de Tedlar forma el revestimiento de la aeronave, y contiene en su interior 13 bolsas de helio de nylon ripstop. Estas bolsas tienen instalados sistemas lidar, para controlar el nivel de gas de su interior.

Pathfinder 1 cuenta con un sistema motor híbrido, con dos generadores diésel de 150 kilovatios que trabajan junto a 24 baterías para proporcionar energía a los motores eléctricos, según una reciente presentación del CEO de LTA, Alan Weston. Él afirmó que LTA tiene planes de utilizar hidrógeno en futuras versiones del dirigible, tal vez como combustible para futuras celdas de combustible o motores.

Aunque el Pathfinder 1 está diseñado para ser operado por un solo piloto, cuenta con doble-mando y, según la carta de LTA a la FAA, tendrá un segundo piloto a bordo «para las pruebas de vuelo iniciales hasta que se pueda evaluar la carga de trabajo del piloto». La góndola que LTA está utilizando para el dirigible fue diseñada por la famosa compañía Zeppelin en Alemania y puede acomodar hasta 14 personas, aunque durante las pruebas no se permitirán pasajeros.

Con una longitud de 407 pies (124 metros) y un diámetro de 66 pies (20 metros), es considerablemente más largo que el Airlander 10, aunque tiene menos de la mitad de su anchura, lo que le convierte en el mayor dirigible construido en los Estados Unidos desde el Makom. Puede que no califique como la aeronave más grande del mundo, pero sigue siendo absolutamente enorme, aproximándose al doble de la longitud de un Airbus A380. Y aun así, tan solo es una prueba de concepto de lo que vendrá después, el Pathfinder 3: Un dirigible de 984 pies (300 metros). Esto es incluso más grande que los gigantescos dirigibles de la clase Hindenburg de 804 x 135 pies (245 x 41 metros) de la década de 1930, que siguen siendo hasta el día de hoy las aeronaves más grandes jamás construidas.

En última instancia, LTA tiene la intención de utilizar sus aeronaves para misiones humanitarias, transportando carga y personal a áreas inaccesibles por carretera. Brin dirige una organización sin fines de lucro independiente de LTA, llamada Global Support and Development, que ya ha llevado a cabo dichas misiones por mar, en el Caribe, América Latina y el Pacífico Sur.

Comentarios

Si bien es cierto que la necesidad de infraestructuras necesarias para dar soporte en tierra a este tipo de aeronaves son escasas, sería interesante saber cómo se piensan solventar los problemas típicos de los dirigibles, que son algo difíciles de manejar en tierra y hace falta anclarlos. De hecho, por ese motivo en la última oleada que hubo de regreso al dirigible se apostaba por aeronaves híbridas, donde el 80% de la sustentación venía del helio y el resto de la forma de fuselaje sustentador de la aeronave.

Fuentes

Airbus recupera los rotores Flettner para su nuevo transporte marítimo

Nuevo transporte marítimo de Airbus con rotores Flettner

Hoy me han dicho que Airbus había propuesto un barco que aprovechaba el viento para reducir sus emisiones, y me he encontrado esta foto en la nota de prensa de Airbus. He abierto los ojos como platos, ¿no serán unos rotores Flettner en un barco de transporte de piezas de Airbus? Y así es, la nota de prensa ha confirmado nuestras sospechas.

En un intento por reducir el consumo de combustible y por tanto las emisiones, se lleva estudiando desde hace años la instalación de velas en los barcos de carga. Normalmente hemos visto velas rígidas, que no dejan de ser como alas de avión con su flap, que generan sustentación que sirve para avanzar y aliviar la carga de los motores. También se han propuesto velas flexibles, tipo cometa, para este mismo propósito. Y siendo Airbus un líder de la industria aeronáutica y su incursión en las regatas con velas rígidas basadas en su conocimiento, esperábamos que fueran este tipo de velas. De ahí la sorpresa del rotor Flettner, que no es la primera vez que aparece en este blog.

¿Recordáis como funciona un ala? Resumiendo, dijimos que, básicamente, era una forma que producía una circulación de aire entorno a ella y esa circulación hacía que el aire del extradós se acelerara y el del intradós se ralentizara, y de este modo generábamos la sustentación porque en el extradós, por esa mayor velocidad del aire, aparecía una zona de baja presión, mientras que en el intradós era de alta presión.

Esa circulación se puede lograr con el perfil alar. Pero también se puede conseguir haciendo rotar un cilindro en una corriente de aire. Al rotar el cilindro en la corriente de aire, un fluido viscoso, el aire que está en contacto con el cilindro, se acelerará en donde la velocidad de rotación del cilindro y la velocidad de avance relativa al aire, y se frenará en el lado contrario, obteniendo así una distribución de presiones similar al ala, y por tanto sustentación.

De hecho, este tipo de rotores se ha utilizado experimentalmente en aviones tripulados a tamaño real, además de en multitud de aviones de radio control.

Pues ni más ni menos, ese es el dispositivo que podemos ver en la parte superior del barco de Airbus. Un cilindro que rota, y que genera una fuerza que tira del barco al rotar, como ya hiciera este «rotor-ship» de 1925.

La ESA también ha optado por introducir velas en sus transportes, en esta ocasión velas rígidas, similares a las que usa Airbus en las regatas. Es interesante ver otros conceptos, como este, con velas más tradicionales, tambien orientados a suplementar la propulsión a motor con el viento para ahorrar combustible.

Y ahora, vamos a por la nota de prensa de Airbus

Airbus renueva su flota transatlántica con barcos de bajas emisiones

Toulouse, 25 de octubre de 2023: Airbus renovará toda la flota de barcos chárter que transportan subconjuntos de aviones entre las instalaciones de producción en Europa y los Estados Unidos con tres modernos barcos de carga, de bajas emisiones y con propulsión asistida por el viento.

Airbus ha encargado al armador Louis Dreyfus Armateurs construir, ser propietario y operar estos nuevos barcos altamente eficientes que entrarán en servicio a partir de 2026.

Se espera que la nueva flota reduzca las emisiones promedio anuales de CO2 transatlánticas de 68,000 a 33,000 toneladas para 2030. Esto contribuirá al compromiso de Airbus de reducir sus emisiones industriales totales hasta en un 63% para finales de la década, en comparación con 2015 como año de referencia, siguiendo la senda de 1.5 °C del Acuerdo de París.

La renovación de nuestra flota marina es un gran paso adelante para reducir nuestro impacto ambiental. La última generación de barcos propuesta por Louis Dreyfus Armateurs es más eficiente en consumo de combustible que sus predecesores, utilizando tecnologías de vanguardia como la propulsión asistida por el viento. Esto demuestra nuestra determinación de liderar en la descarbonización de nuestro sector al innovar no solo en la aviación, sino en todas nuestras operaciones industriales.

Nicolas Chrétien, Jefe de Sostenibilidad y Medio Ambiente de Airbus

Estamos muy contentos de haber sido elegidos por Airbus para desarrollar esta flota vanguardista y de bajas emisiones y de continuar nuestra larga asociación. Este nuevo proyecto, que establece altos objetivos, refleja nuestra ambición con respecto a la descarbonización de la industria naviera. Estamos orgullosos de apoyar a nuestros clientes en su transición energética, superando incluso sus expectativas al ofrecer soluciones innovadoras y fomentando el cambio de manera sostenible.

Edouard Louis-Dreyfus, Presidente de Louis Dreyfus Armateurs

Airbus renovará gradualmente los barcos chárter que transportan sus subconjuntos de aviones a través del Atlántico entre Saint-Nazaire, Francia, y su línea final de ensamblaje de aviones de un solo pasillo en Mobile, Alabama.

Los nuevos barcos estarán propulsados por una combinación de seis rotores Flettner: cilindros grandes y giratorios que generan sustentación gracias al viento, lo que impulsa el barco hacia adelante; y dos motores de doble combustible que funcionan con diesel marítimo y e-metanol. Además, el software de navegación optimizará el viaje de los barcos a través del Atlántico, maximizando la propulsión por viento y evitando la resistencia causada por las condiciones oceánicas adversas.

La renovación de la flota también respalda la ambición de Airbus de aumentar la tasa de producción de la familia A320 a 75 aviones por mes para 2026. Cada nuevo barco transatlántico tendrá la capacidad de transportar alrededor de setenta contenedores de 40 pies y seis conjuntos de subconjuntos de aviones de un solo pasillo: alas, fuselaje, pilones de motor, planos horizontales y verticales de la cola; en comparación con tres o cuatro conjuntos con los barcos de carga actuales.

Estructuras «vivas» que brillan bajo carga. Y cuanto más carga, más brillo

¿Imagináis poder comprobar de un simple vistazo cómo de cargada está una estructura? ¿Poder visualizar en una pieza real el nivel de esfuerzos y cómo se reparten, como si estuvieras viendo una simulación realizada en el ordenador?

Hace años que esto es posible, gracias a materiales con propiedades fotoelásticas, aunque hasta ahora no ha tenido ninguna aplicación más allá del campo de la formación.

Y los últimos avances hacia estructuras que se puedan monitorizar de este modo, publicados recientemente por la Universidad de California apuestan por un material fotoelástico vivo.

Se trataría de un material compuesto que integraría en su matriz un tipo de fitoplacton bioluminescente, conocido como dinoflagelados, un alga monocelular marina.

Los dinoflagelados, en su entorno natural, brillan para ahuyentar a los depredadores. Una vez embebidos en la matriz de PEGDA (polyethylene glycol diacrylate), brillan cuando el material es sometido a esfuerzos.

Los sensores así creados no necesitarían alimentación energética externa ni baterías, a diferencia de otros sensores, pero necesitan que los dinoflagelados se sometan a sus ciclos normales de luz-oscuridad para realizar la fotosíntesis. El compuesto tendría que adherirse al elemento a controlar. Hasta ahora se han realizado pruebas de unos cinco meses de duración en condiciones «extremas».

Fuente: Science

Regent desarrollará un «ekranoplano» para el USMC por 4.75M$

Regent Craft es una compañía que hemos venido siguiendo en este blog desde que vimos por primera vez su propuesta de vehículo de efecto suelo eléctrico (WIG en inglés, más conocido de forma popular como ekranoplano por los desarrollos soviéticos).

El aparato es un diseño peculiar, que une un casco con hidrofoil al que llama SeaGlider. Aparentemente ha tenico cierto predicamento en Hawai, donde podría llegar a realizar enlace entre islas. El proyecto ha avanzado poco a poco, con la presentación de una maqueta a escala 1:1, a todas luces con fines comerciales y para lograr inversores, y con el vuelo de un demostrador tecnológico a escala, radio controlado.

Además cuenta entre sus inversores con Lockheed Martin. Esta inversión iría orientada a desarrollar una versión militar del Regent Viceroy, pues los seagliders satisfacen una necesidad reconocida dentro del Departamento de Defensa de los EE. UU. de movilidad de alta velocidad y que no dependa de pistas de aterrizaje, bajo costo y baja firma en los litorales. De hecho esa descripción se corresponde con las necesidades descritas por DARPA en la definición de su Liberty Lifter.

Y ahora, además, ha firmado un contrato con el Cuerpo de Marines de Estados Unidos.

REGENT firma un acuerdo de $4.75 millones con el Cuerpo de Marines de los Estados (nota de prensa)

El 18 de octubre de 2023 Regent, el fabricante de seagliders totalmente eléctricos para la movilidad marítima sostenible, anunció hoy que ha firmado un acuerdo con el Laboratorio de Combate del Cuerpo de Marines (MCWL) para demostrar la tecnología Seaglider en operaciones logísticas de defensa.

REGENT es una empresa orgullosa de uso dual, y estamos emocionados de comenzar este trabajo con el USMC como primer paso para construir seagliders que apoyen a los miembros de nuestro país en entornos marítimos disputados. Desplegar rápidamente tecnología que aborde la creciente necesidad de capacidades de salto de isla en el Indo-Pacífico es fundamental para REGENT. Si bien la amenaza es existencial, nos motiva el hecho de que nuestro vehículo podría salvar vidas o desempeñar un papel en disuadir conflictos por completo.

Billy Thalheimer, co-fundador y CEO de REGENT

Los seagliders son embarcaciones de efecto suelo e hydrofoiling que operan exclusivamente en el ámbito marítimo. Abordan una brecha reconocida dentro del Departamento de Defensa de los Estados Unidos para la movilidad de alta velocidad, bajo costo, baja firma y sin necesidad de pistas en las áreas litorales y cumplen una variedad de misiones, incluyendo transporte de tropas y carga, operaciones avanzadas de bases expedicionarias y comunicaciones.

El seaglider Viceroy de REGENT puede transportar 12 pasajeros o 3500 libras de carga y viajar hasta 180 millas con una sola carga. «En las áreas litorales tenemos que movernos, y la gestión de la firma es crítica», dijo el General Retirado Robert Neller, quien se desempeñó como el 37º Comandante del Cuerpo de Marines y ahora forma parte del Consejo Asesor de Defensa de REGENT. «Los seagliders de REGENT proporcionan la capacidad de distribuir múltiples capacidades en las áreas litorales, incluyendo logística, comando y control y ISR. Las capacidades de los seagliders de REGENT crearán éxito».

Los objetivos del programa son validar la capacidad del seaglider para operar en cada uno de sus modos de operación de casco, ala y foiling, informar sobre la reducción de riesgos y los requisitos de certificación a nivel de embarcación, y comprender el potencial del vehículo en operaciones militares, incluyendo maniobra y operaciones de transporte. El programa culminará en una demostración técnica en vivo del prototipo a escala real durante un ejercicio a gran escala organizado por el Gobierno de los Estados Unidos.

¿Relacionado con el programa Liberty Lifter de DARPA?

El programa de DARPA centra el foco en tres aspectos:

  • Operaciones marítimas ampliadas: Se hará hincapié en el funcionamiento en estados de mar turbulentos mediante la creación de capacidades STOL para reducir la carga de impacto de las olas durante el despegue/aterrizaje y nuevas soluciones de diseño para absorber las fuerzas de las olas. Además, el proyecto abordará los riesgos de colisión del vehículo durante el funcionamiento a alta velocidad en entornos congestionados. Por último, el objetivo es que el vehículo funcione en el mar durante semanas, sin actividades de mantenimiento en tierra.
  • Fácil industrialización a gran escala y bajo coste: La construcción dará prioridad a los diseños sencillos y baratos de fabricar frente a los conceptos complejos y de bajo peso. Los materiales deben ser más asequibles que los de la fabricación tradicional de aviones y estar disponibles para ser comprados en grandes cantidades.
  • Controles complejos de vuelo y en el mar: Se desarrollarán sensores y esquemas de control avanzados para evitar las grandes olas y gestionar las interacciones aerodinámicas e hidrodinámicas durante el despegue y el aterrizaje.

Los conceptos de diseño los están desarrollando General Atomics y Aurora FS, y en principio se superpone bastante con las especificaciones del sea glider de Regent, excepto en un punto, el tamaño. El Regent tiene un tamaño más bien reducido, las imágenes del programa Liberty Lifter de DARPA muestran grandes vehículos de efecto suelo, capaces de transportar incluso vehículos de gran tonelaje, así que este proyecto con el cuerpo de marines más bien parece algo complementario al de DARPA.