Airbus y su ala biomimética en el Paris Air Show (Le Bourget)

El ala eXtra performance comenzó con el proyecto Albatross

La naturaleza es una gran fuente de inspiración para los ingenieros. Y Airbus comenzó a investigar con el proyecto Albatross ya hace unos años una punta de ala que actuara como las plumas terminales de las alas de las rapaces. Superó con éxito las pruebas de túnel de viento, y ahora ha estado presente en el Paris Air Show 2023.

En el Paris Air Lab, un pabellón especial dedicado a la tecnología sostenible, es donde Airbus ha presentado este modelo a gran escala del ala eXtra Performance.

Es de sobra conocido que los torbellinos de punta de ala causan la resistencia inducida, y que hay muchas estrategias para lograr mitigar esta resistencia, como modificar la punta de ala con distintos tipos de winglets, cortando la punta de ala en planta dándole forma de flecha invertida, cortando la punta del ala en alzado en los llamados Hoerner tips, e incluso probando formas mucho más originales, como aquellos Spiroid Wingtip… Y por supuesto, con alas de gran alargamiento.

Cuanto mayor es el alargamiento del ala, más se parece el comportamiento de éste al ala teórico de envergadura infinita, donde los efectos de borde se pueden despreciar y se puede considerar el perfil en dos dimensiones, y por tanto no existen los efectos de fuera de plano que introducen los torbellinos de punta de ala y hacen aumentar la resistencia inducida inclinando hacia atrás la resultante de la sustentación. Vale, tal vez es hora de definir el alargamiento del ala: es un número adimensional que nos indica cómo de larga es el ala respecto a su anchura. En alas rectangulares es la envergadura divido entre la cuerda. En general se expresa como AR=b^2/S, siendo b la envergadura y S la superficie alar, o AR=b/cma, siendo b la envergadura y cma la cuerda media aerodinámica.

Que el ala sea tan esbelta, y tan larga, no solo trae ventajas. Tambien trae inconvenientes. Como una bailarina girando sobre sus pies con los brazos extendidos o retraídos cambia su velocidad de rotación, la longitud del ala hace cambiar la velocidad de alabeo. Así que cuanto más largas, menos maniobrabilidad en alabeo. Además cuanto más largas mayor es el momento que inducen en el encastre (la unión del ala al fuselaje), por aquella ley de la palanca que cuanto más alejes la fuerza del punto de aplicación más momento tienes.

Así pues las alas de los albatros, que son de gran alargamiento, lo que les permite volar grandes distancias sin cansarse, aportan una solución a los aviones comerciales, en los que la maniobrabilidad no es tan importante como en un caza y donde prima el consumo en viajes a larga distancia. Pero si se estudian más a fondo aportan más soluciones.

Los albatros pueden «bloquear» las alas en la posición de crucero, y sin embargo cuando tienen una ráfaga el ala flexa y no se comporta de forma rígida, evitando transladar esa carga de ráfaga, ese momento, al fuselaje. Pues ese es el invento que llevan probando los de Airbus desde hace algún tiempo. Lo llaman punta de ala con bisagra semi-rígida.

¿Y cómo funciona? Pues más o menos como los viejos slats de Handely Page, con un muelle, o resorte, o material con una rigidez tal que permita a la punta de ala deflectarse más o menos en función de la carga que presione sobre ella. En los slats automáticos desarrollados por Handely Page hace cien años, los slats iban unidos a un resorte, de tal modo que mientras la presión aerodinámica sobre el slat fuera pequeña éste iba desplegado, permitiendo el paso del intradós al extradós, mientras que al aumentar la velocidad del avión aumentaba la presión sobre el slat, haciendo que se retrajera de forma automática. Pues con un mecanismo similar, pero en vez de linal, rotatorio, podemos hacer que la rigidez de la bisagra permita a la punta de ala adaptarse, y en función de la ráfaga que reciba el ala se plegara más o menos. Y no solo eso, en función de la velocidad de vuelo la punta de ala tendrá más o menos diedro.

El uso de una sección exterior articulada con una articulación semiaeroelástica permite que un avión de tamaño A320 aumente su envergadura en un tercio, aumentando el alargamiento en un 50 %, lo que reduce la resistencia, aumenta la eficiencia y ofrece un ahorro potencial de combustible del 5 al 10 %.

Pero al ser las puntas de las alas plegables, permitirán que un A320 con este ala de alto alargamiento encaje en una «caja» de aeropuerto estándar cuando está estacionado en una puerta.

El ala también tiene un borde de salida multifuncional, con superficies aerodinámicas que combinan funciones de hipersustentadores, alerones y spoilers. En esto, el ala está más cerca de las plumas ultraeficientes de un pájaro.

Ahora se está construyendo una versión a escala 1:3 del ala que montaría un avión de pasillo único en el Centro Nacional de Compuestos (NCC) en el Reino Unido, que se acoplará a un avión de negocios de Cessna para probar el concepto en vuelo en 2024.

Fuentes: el blog de Sandglass y Royar Aeronautic Society

Alas arriostradas de gran alargamiento: X-66, el nuevo avión experimental de la NASA

Ya sabéis que en la aviación se han dado las carreras del más rápido, más alto, más lejos. Después vino la de más gente/más carga. Y en los últimos años hemos venido hablando del más verde.

Y en Estados Unidos, Boeing y la NASA están trabajando desde hace tiempo en los aviones de las próximas generaciones, y el que parecía que iba a llevar las de ganar era el avión transónico con alas de gran alargamiento arriostradas, que tanto recuerda a los diseños de Hurel-Dublois.

Y, hoy, por fin, después de haberlo visto probar en túnel de viento y haber protagonizado muchas notas de prensa, y después de que en enero nos aseguraran de que se iba a construir el prototipo, hemos conocido el nombre con el que construirá la NASA este avión experimental: X-66.

Como hemos hablado mucho de este diseño lo resumimos, podéis ampliar la información en los enlaces que hemos dejado párrafos atrás:

La idea es crear un avión que tenga muy baja resistencia aerodinámica. Para ello se apuesta por unas alas de muy alto alargamiento (la relación de la envergadura al cuadrado y la superficie alar, que nos da un índice que mide cómo de larga es el ala respecto a su ancho). Pero para hacer este tipo de ala con una estructura en voladizo, sería necesario un encastre y una estructura alar muy pesados. ¿Solución? recuperar el diseño de Hurel-Dubois, con riostras carenadas que doblan su función como pequeñas alas.

Y, ahora, vamos a por la nota de prensa.

El avión experimental de próxima generación se convierte en el X-Plane más nuevo de la NASA

La NASA y Boeing han anunciado que la aeronave producida a través del proyecto de demostración de vuelo sostenible de la agencia ha sido designada por la Fuerza Aérea de EE. UU. como X-66A.

El nuevo avión experimentla busca ensayar una posible nueva generación de aviones de pasillo único más sostenibles, el caballo de batalla de las aerolíneas de pasajeros de todo el mundo. En colaboración con la NASA, Boeing construirá, probará y volará un avión de demostración a gran escala con alas extra largas y delgadas estabilizadas por puntales, conocido como concepto Transonic Truss-Braced Wing.

“En la NASA, nuestros ojos no solo se centran en las estrellas, sino que también se fijan en el cielo. El Demostrador de Vuelo Sostenible se basa en los esfuerzos líderes mundiales de la NASA en aeronáutica y clima. El X-66A ayudará a dar forma al futuro de la aviación, una nueva era en la que los aviones serán más ecológicos, limpios y silenciosos, y creará nuevas posibilidades tanto para el público aeronáutico como para la industria estadounidense”.

administrador de la NASA, Bill Nelson

El X-66A es el primer avión X enfocado específicamente en ayudar a los Estados Unidos a lograr el objetivo de cero emisiones netas de gases de efecto invernadero de la aviación, que se articuló en el Plan de Acción Climática de la Aviación de los Estados Unidos de la Casa Blanca.

“Para alcanzar nuestro objetivo de cero emisiones netas de la aviación para 2050, necesitamos conceptos de aviones transformadores como los que estamos volando en el X-66A. Con este avión experimental, apuntamos alto para demostrar los tipos de tecnologías de ahorro de energía y reducción de emisiones que necesita la industria de la aviación”.

Bob Pearce, administrador asociado de la Dirección de Misiones de Investigación Aeronáutica de la NASA

La NASA y Boeing buscaron la designación del avión X poco después de que la agencia anunciara el premio del proyecto Demostración de Vuelo Sostenible a principios de este año. La Fuerza Aérea otorga el estado de X-plane a los programas de desarrollo que se proponen crear configuraciones revolucionarias de aeronaves experimentales. La designación es para aviones de investigación. Con pocas excepciones, los aviones X están destinados a probar diseños y tecnologías que pueden adoptarse en otros diseños de aeronaves, no sirven como prototipos para la producción completa.

“Estamos increíblemente orgullosos de esta designación, porque significa que el X-66A será el próximo de una larga lista de aeronaves experimentales utilizadas para validar diseños innovadores que han transformado la aviación. Con los aprendizajes obtenidos del diseño, la construcción y las pruebas de vuelo, tendremos la oportunidad de dar forma al futuro del vuelo y contribuir a la descarbonización de la industria aeroespacial”.

Todd Citron, director de tecnología de Boeing

Para el X-66A, la Fuerza Aérea proporcionó la designación de una aeronave que valida tecnologías para una configuración TTBW que, cuando se combina con otros avances en sistemas de propulsión, materiales y arquitectura de sistemas, podría resultar en hasta un 30 % menos consumo de combustible y emisiones reducidas en comparación con el mejor avión de su clase actual.

Debido a su uso intensivo, los aviones de pasillo único representan hoy en día casi la mitad de las emisiones de la aviación en todo el mundo. La creación de diseños y tecnologías para una versión más sostenible de este tipo de avión tiene el potencial de tener un profundo impacto en las emisiones.

La historia de la NASA con la designación del avión X se remonta a la década de 1940, cuando su agencia predecesora, el Comité Asesor Nacional para la Aeronáutica (NACA), creó conjuntamente un programa de aviones experimentales con la Fuerza Aérea y la Marina de los EE. UU. El X-66A es el último de una larga línea de aviones X de la NASA. Además, el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, ha brindado experiencia técnica y apoyo para varios aviones X adicionales.

Para el Demostrador de Vuelo Sostenible, la NASA tiene un Acuerdo de Ley Espacial Financiada con Boeing a través del cual la agencia invertirá $ 425 millones durante siete años, mientras que la compañía y sus socios contribuirán con el resto de los fondos, estimados en alrededor de $ 725 millones. La NASA también contribuirá con experiencia técnica e instalaciones.

El proyecto Demostrador de Vuelo Sostenible es una actividad del Programa de Sistemas de Aviación Integrados de la NASA y un elemento clave de la Asociación Nacional de Vuelo Sostenible de la agencia, que se centra en el desarrollo de nuevas tecnologías de aviación sostenibles.

Obtenga más información sobre el Demostrador de Vuelo Sostenible aquí.

[Vídeo] Cub-Crafters presenta sus slats soplados por motores eléctricos

Los más fieles seguidores ya saben cómo funciona un ala, cómo entra en pérdida, y cómo funciona un hipersustentador, así que haremos un breve resumen.

Para que el ala funcione necesitamos que el flujo de aire se adhiera a la superficie. Si se desprende, el ala entra en pérdida. Además el ala vuela porque se genera una circulación entorno a la misma, así que si soplamos el aire sobre el ala para aumentar esa circulación, hacemos aumentar la sustentación.

Los slats normales simplemente permiten que el aire pase del intradós (parte inferior del ala) al extradós (la superior), soplando la capa límite y haciendo que no se desprenda, y así retrasar la entrada en pérdida.

Los slats, que han llamado Electric Lift Augmenting Slats (ELAS) , que presenta Cub Crafters no sólo permiten eso, sino que además al tener muchos pequeños motores eléctricos distribuidos a lo largo de su envergadura permiten acelerar el aire y por tanto aumentar la circulación, y por ello la sustentación.

Dicen desde Cub Crafters que esta solución permite multiplicar el coeficiente de sustentación por un factor que varía entre 1.5 y 4.

Como inconveniente, aumenta la resistencia de la aeronave. Sería interesante saber si durante el curcero permanecen en funcionamient, formando así parte de un sistema de propulsión eléctrica distribuida más el motor convencional, y el efecto que tiene sobre el consumo, tal vez al soplar la capa limite de forma constante se necesite menos potencia para volar y se contrarreste el exceso de resistencia con un menor consumo. Pero esto tan solo es una hipótesis, sería interesante estudiar más a fondo las prestaciones del avión con este dispositivo.

No es la primera empresa que recurre a soplar la capa límite desde el borde, y ya sabemos que puede hacer que un avión del tamaño de un 737 despegue como una Storch. También podemos recordar por ejemplo el Catalina Cuatrimotor, el Antonov An-2 con nueve motores, las Cessnas con soplado de la capa límite, el nuevo avión de DARPA y otros sistemas que energizan la capa límite, como los aviones con propulsión distribuida, o el turbo-wing, que fuerza la circulación desde el flap en lugar desde el slat.

Imagen de la patente
Imagen de la patente
Imagen de la patente

En cualquier caso, estamos deseando ver vídeos de los aviones de Cub Crafter utilizando este dispositivo para realizar espectaculares tomas y despegues ultra cortos.

ELAS según Carbon Crafters

Electric Lift Augmenting Slats (ELAS) es el resultado de combinar slats de vanguardia y una serie hélices entubadas eléctricas (electric ducted fans o EDF) que aceleran el aire en el intersticio entre el slat y el perfil aerodinámico del ala.

El concepto ELAS proporciona: impulso eléctrico similar a los JATO (Jet Assisted Takeoff) en el despegue y el ascenso, reducción de la velocidad de descenso y aterrizaje, ángulos de aproximación más pronunciados y mejores márgenes y prestaciones a baja velocidad.

ELAS puede agregarse a una existente (retrofits) o incorporarse a un diseño nuevo. Incluso se puede diseñar como retráctil cuando no está en uso.

En lugar de que los EDF se usen únicamente para agregar empuje, como los conceptos habituales de propulsión distribuida, ELAS también proporciona un aumento dramático en la sustentación al aumentar la velocidad del aire sobre la superficie superior del ala, una forma de hiper sustentador de soplado de capa límite.

Este diseño, que combina un slat clásico con el concepto de propulsión distintos distribuida y energizado de la capa límite con el flujo de los motores, se basa en anteriores diseños de probada eficacia, como el ala de acanalada Custer, aviones como los Boeing YC-14 y NASA QSRA y los últimos avances de propulsión distribuida.

Además, ELAS puede proporcionar un mejor control de aeronaves a baja velocidad a través del aumento de la sustentación máxima y el ángulo de pérdida, y la distribución de potencia diferencial. El control de la distribución de energía tiene el potencial de reducir la pérdida de control (LoC) durante los períodos críticos de baja velocidad y brindar mejores cualidades de manejo durante las ráfagas.

Ventajas…

  • Las aeronaves pequeñas equipadas con ELAS pueden despegar y aproximarse/aterrizar con perfiles similares a los de un helicóptero.
  • Se puede instalar en vuna aeronave existente o integrarse en aeronaves de nuevo diseño
  • Costos recurrentes y de adquisición más bajos que eVTOL
  • Ente un 50% -100% más de alcance y con más carga útil que eVTOL comparable.
  • No se requiere tecnología de baterías de última generación
  • Utiliza teología lista para usar.

Bombardier finaliza la primera fase de ensayos de su Blended Wing Body «EcoJet», y anuncia un segundo prototipo

Desde hace un tiempo venimos siguiendo este desarrollo de Bombardier, llamado EcoJet, un Blended Wing Body, o BWB.

Bombardier comenzó sus investigaciones en 2018. Y ha terminado la campaña de ensayos con su primer prototipo a escala pequeña, y anuncia ya una segunda campaña de ensayos con una aeronave dos veces más grande.

No es el primer constructor que se apunta a este concepto, aunque sí es el primero que lo propone como reactor de negocios en lugar de como avión de pasajeros.

Con el EcoJet, Bombardier pretende probar distintas soluciones que reduzcan el consumo, con la participación de las universidades y actores industriales canadienses.

Esta configuración reduce mucho la resistencia, y por tanto el consumo. Y Bombardier pretende ensayar la propulsión híbrida con él. Rechazan la idea de la aviación eléctirca pura por el consabido problema de densidad energética de las baterías.

La posición de los motores, si bien tradicional en los reactores de negocios, tiene varias ventajas, como poder intercambiar con relativa facilidad el tipo de motor sin gran impacto en la estructura, o poder jugar con el concepto de ingestión de la capa límite para reducir más la resistencia.

Esperan, con el estudio de este demostrador, definir el avión de negocios del futuro.

La transición a unos aviones de bajas emisiones de CO₂ esperan lograrla basándose en cuatro puntos.

  • Tecnología: nuevas configuraciones de la aeronave, la introducción del hidrógeno y del combustible sostenible para aviación (SAF), la propulsión híbrida o el reciclaje.
  • Operaciones e infraestructura: no todas las mejoras pueden realizarse en las aeronaves. Se pueden realizar muchas mejoras en la forma de operar las aeronaves así como en las infraestructuras donde operan o con las que se le dan apoyo. Las innovaciones en los aeropuertos, en las rutas, en el mantenimiento y el servicio de las aeronaves se ensayaran en las nuevas instalaciones de Bombardier de Toronto Pearson International Airport, Mississauga.
  • SAF: Bombardier está trabajando en la implementación de este tipo de combustibles.
  • Medidas basadas en el Mercado de emisiones.

PteroDynamics X-P4 Transwing un VTOL con ala plegable a lo portaaviones

Son muchos los diseños de UAV capaces de despegar y aterrizar verticalmente y volar como un avión de ala fija. Son muchos los conceptos que se han probado para solucionar este problema, desde los tail-sitter a los rotores basculantes o simplemente los que combinan en una misma célula los rotores del multirrotor y el ala fija, y arrastran la resistencia de los rotores parados durante su vuelo horizontal.

PteroDynamics ha optado por una solución de rotor y ala basculante original. Ha tomado la configuración de ala plegable que patentó en su día Fairey, que permite plegar las alas a lo largo del fuselaje con una sola articulación, cuyo eje está en una dirección oblicua, y hace que su borde de ataque quede hacia arriba, y ha mezclado esta solución con cuatro rotores que doblan como propulsores durante el vuelo horizontal y el vuelo vertical, facilitando la transición entre ambos modos.

El mecanismo de Fairey es muy similar al de Grumman, solo que en el último caso el borde de ataque queda orientado hacia abajo, por lo que no se puede modificar para crear aeronaves VTOL.