El caza surcoreano KF-21, anteriormente conocido como KF-X, ha sido visto en el Aeropuerto de Sacheon haciendo pruebas de taxi.
El primer prototipo fue presentado al público en 2021, y se espera que vuele este mes. Otros 5 prototipos se unirán a éste en los ensayos en vuelo.
El caza tiene un fuselaje con diseño furtivo aunque las cargas, en un principio, irán en soportes exteriores en lugar de en una bodega interna, lo que lo hace menos furtivo que los cazas de quinta generación. Sin embargo su software y capacidad de comunicarse e intercambiar datos es más similar a un caza de quinta generación. Por eso suele considerarse un caza de 4.5 generación, aunque con capacidad de evolucionar.
SCEYE apuesta por ellos como HAPS, esto es, pseudo satélites de gran altitud (High Altitude Pseudo Satellites). Su objetivo es hacerlo con energías renovables. Y parece que podría estar interesada en operar desde el aeropuerto de Teruel. En este caso sería un dirigible puro, no como el híbrido que anunciaba Air Nostrum, lo que puede dificultar su manejo en tierra. Claro, que la idea es que actúe como pseudo satélite de comunicaciones y que apenas tenga que volver a tierra.
H2Clipper
H2 Clipper apuesta por el dirigible como medio de transporte. Supuestamente será de propulsión híbrida hidrógeno-eléctrica. Quieren tener su primer prototipo a escala para 2025 y un segundo prototipo a tamaño real para 2028. Fechas que nos parecen algo ambiciosas. Hay otros números que también asustan: pretenden poder transportar 150 toneladas métricas a 9650km de distancia, y competir con trenes y barcos.
Ocean Sky Cruises quiere devolvernos al lujo de los cruceros aéreos en zeppelin, puro sabor añejo años treinta. Pero de forma sostenible. Como Air Nostrum, apuesta por el HAV Airlander, dirigible híbrido (ya sabéis, no toda la sustentación viene del helio, parte viene del fuselaje sustentador). Quieren hacer dos rutas, una de ellas hasta el polo, la otra sobre el Trópico de Capricornio, por menos de 300000$ en su dirigible equipado como hotel de lujo.
Así pues, estamos ante el enésimo regreso de los dirigibles como la aviación del futuro. Y es que ya se sabe, en la aviación, como en la moda, todo vuelve de vez en cuando. Y, como dijimos en la presentación de Aviones Bizarros, en ocasiones las ideas vuelven una y otra vez y nunca se terminan de materializar simplemente porque son imposibles (=no son rentables o tecnológicamente son inviables). En otras ocasiones las ideas vuelven una y otra vez porque con la tecnología del momento no son factibles, y reaparecen de tarde en tarde hasta que la tecnología avanza y alcanza las ideas, y entonces se quedan entre nosotros (como los drones). ¿En cuál de los dos casos estaremos esta vez con los dirigibles?
Si bien ya os hemos hablado de los aviones estadounidenses con tren de orugas o de cadenas, hoy va a ser la primera vez que contemos su historia de forma tan detallada. Sentaos que nos va a llevar un rato.
El equipo de Elektra lleva más de diez años de experiencia acumulada en aviones eléctricos. La primera vez que aparecieron en nuestras páginas fue en 2010, y hacía mucho que les teníamos perdida la pista. Nos ha alegrado volver a leer de ellos, aunque parece que han rebajado su nivel de expectativas y han eliminado el requerimiento de avión solar para este entrenador.
La aeronave es muy aerodinámica, con un ala de gran alargamiento, lo que reduce la resistencia inducida, y con un tren retractil biciclo, con pequeñas ruedas auxiliares en punta de plano, al estilo de los veleros. Esta configuración de tren le permite reducir la resistencia y ahorrar peso.
Además Elektra trabajaba en hangares con techos solares para recargar sus aeronaves mientras están en el hangar, y en sistemas de diagnóstico avanzado, para mejorar el mantenimiento predictivo de las aeronaves.
El Elektra Trainer hereda claramente sus líneas de su predecesor monoplaza, el Elektra ONE.
El Elektra Trainer, como su antecesor Elektra ONE tiene un tren biciclo retractil con ruedas auxiliares de punta de plano, típico de los veleros
Según su nota de prensa:
El 29 de junio de 2022, un avión ultraligero -según la normativa alemana- eléctrico biplaza Elektra Trainer de Elektra Solar GmbH (una empresa derivada del Instituto DLR de Robótica y Mecatrónica) despegó para su vuelo inaugural en el Aeropuerto Internacional de Memmingen.
El avión despegó entre jets de negocios y aviones comerciales en menos de 100 m en silencio y sin emisiones. Después de unos 20 minutos de vuelo, el piloto de pruebas Uwe Normann aterrizó, confirmando las extraordinarias características de la aeronave, que incluso superó las expectativas de los desarrolladores, llegando a velocidades ascensionales de más de 1500fpm (8 m/s), volando en vuelo de crucero bajo con solo unos 10 kW (13.4CV) de potencia, sin vibraciones en la cabina y con una estabilidad perfecta. Al aterrizaje la batería tenía un remanente de un 80% de carga.
Elektra Trainer fue diseñado como un avión ideal para escuelas y clubes de vuelo. Los costes operativos son inferiores a 60 EUR/hora, que -según la nota de prensa- es aproximadamente la mitad del coste de un avión ultraligero clásico. Esta diferencia de precio aumentará de un año a otro debido al rápido aumento de los costos del combustible.
Con esta aeronave, Elektra Solar GmbH pone en funcionamiento una infraestructura en la nube para el diagnóstico automático del sistema y el mantenimiento preventivo (Digital Aircraft Platform). Los datos de estado del sistema del vuelo se cargan en una nube y se analizan automáticamente con la ayuda de algoritmos de IA. Los errores y desviaciones del estado normal se comunican al propietario y/o a una empresa de mantenimiento. Gracias a esta tecnología, se incrementará la seguridad de funcionamiento y se reducirá aún más el esfuerzo de mantenimiento.
Después de este vuelo inaugural, comenzarán las pruebas de vuelo de certificación, con el objetivo de completar la certificación UL alemana para fines de este año.
Autonomía: 2,5 horas
Alcance: 300 km
Cabina lado a lado de 1,25 m de ancho
La burbuja de plexiglás es cómoda para pilotos de 2 m de altura
Tiempo de montaje desde el remolque de transporte hasta que esté listo para volar: unos 30 minutos
Estación de carga portátil de 12 kW
Hélice de paso variable
Tren de aterrizaje retráctil eléctrico
Plataforma digital de aeronaves para diagnóstico automático de sistemas y mantenimiento preventivo
Tasa de planeo superior a 25:1
Velocidades
Crucero
120 km/h
Pérdida
con Flaps
82 km/h
Pérdida
sin flaps
91 km/h
Máxima
velocidad operacional
180 km/h
VNE
205 km/h
Velocidad
ascensional
3 m/s (590fpm)
Distancias de despegue y aterrizaje
Despegue
200 m
Aterrizaje
200 m
Alcance y Autonomía
Autonomía
máxima
2.5 hours
Alcance
máximo
300 km
Motorización
motor
eléctrico
HPD-50D
Potencia
máxima
50 kW | 67CV
Potencia
máxima continua
40 kW | 54CV
Potencia
de velocidad de crucero
12 kW | 16CV
Máxima
capacidad de la batería
35 kWh
Pesos
MTOW
600 kg | 1322,77 lb
Peso
en vacío pero con la máxima cantidad de baterías
Panel de la Belly Fairing justo sobre el pozo del tren dañado por un fallo de una rueda
El 1de julio aterrizaba un A-380 sin un panel de la Belly Fairing (literalmente, carenado ventral), que no fuselaje. La Belly Fairing es un carenado que cuelga bajo el fuselaje y tapa sistemas o el tren y no tiene responsabilidad estructural.
Ubicación de la Belly Fairing Fig 1 (2) y vista esquemática en perspectiva Fig2
Esquema de cómo va colgada la Belly Fairing del fuselaje (109) a travñes de barras (211)
Éste tipo de fallos requiere lo que se denomina PRA (particular risk analysis – análisis de riesgos particulares). Consiste en analizar todas las trayectorias posibles del proyectil y analizar los daños y por tanto fallos que puede producir,y su impacto en la seguridad.
Arcos de trayectorias que pueden seguir los restos desprendidos tras el fallo
El trozo desprendido puede ser un trozo de neumático, un trozo de llanta, o ambos. La masa de estos trozos puede llegar a los 2kg, y la velocidad a los 100m/s (360km/h), así pues su energía cinética es muy alta, ¡la equivalente a dejar caer esos dos kg desde 510m de alto!
El análisis consiste en verificar todos los elementos que se pueden interponer en el camino del proyectil en el que se ha convertido el trozo de neumático o de llanta y analizar qué ocurre.
Normalmente se rellenan muchas tablas con datos, como el ángulo de salida del proyectil, parte impactada por el mismo, efectos en caso de perder ese conjunto impactado y criticidad del fallo.
De este análisis pueden surgir modificaciones de diseño, como apantallar bombas hidráulicas o realizar análisis estructurales adicionales para ver si las piezas que se encuentra,ej herrajes de cogida o del flap, aguantan el impacto o no, o si el daño puede ser admisible por no causar un fallo estructural, por ejemplo en el caso de impactar solo en un panel de un carenado.
Estadísticas de WTF desde 1966 a 2005
Como véis, nada se deja al azar en la aviación, y los análisis de seguridad son de los procesos más importantes que existen durante el diseño y certificación de las aeronaves.
Fuentes
La imagen de los daños en el 380 viene de esta noticia, las tablas y gráficos explicando qué es el WTF vienen de esta presentación, y las imágenes descriptivas de la belly fairing vienen de esta otra presentación. Lo que os cuento acerca de este tipo de fallos y su análisis vienen de que trabajé en ello una temporada.
PD: Sí estuve una temporada con WTF, aunque para que el censor de tacos del correo no nos diera problemas lo solíamos abreviar como W&TF, Wheel and tire failure.