Tornado 2 Tempest: reciclar piezas de los viejos Tornado para fabricar el nuevo caza de sexta generación

Reciclaje, economía circular… son conceptos que no sorprenden a nadie ya. Y puede que hayan nacido como movimientos sociales, cuyo origen está en saber que los recursos de la Tierra son finitos, en busca de un menor consumo de materias primas y de energía.

Y, ahora, ha llegado a la industria aeronáutica por otro motivo adicional: reducir la dependencia de materias primas procedentes de otros países, reutilizando el material que puede proceder de viejos cazas retirados.

En un mundo que cada vez se parece menos a los globalizados 90/2000, la dificultad para poder conseguir tierras raras, titanio… puede incrementarse en cualquier momento. Y es por ello que cada vez hay más programas para recuperar estos materiales de productos retirados del mercado. Y, por supuesto, esta capacidad de recuperación y de reaprovechamiento no sólo se puede ver desde un punto de vista ecológico, sino también desde un punto de vista de independencia «estratégica» de proveedores extranjeros. Y ya que se están dando de baja aviones y otros vehículos, ¿por qué no intentar reaprovechar al máximo los materiales que se pueda extraer de ellos?

Y eso es lo que han hecho en Reino Unido con sus viejos Panavia Tornado, convirtiéndolos en polvo de sinterizado para métodos de fabricación aditiva. según nos cuentas sendas notas de prensa que resumimos aquí debajo:

Seguir leyendo

¿Cómo refrigerar un vehículo hipersónico? Haciéndolo sudar.

Los investigadores de RTX validan la «refrigeración por transpiración» en una prueba para DARPA.

Tras la barrera del sonido está la barrera del calor. De sobra son conocidos los problemas de algunas de las aeronaves más rápidas porque en frío «sudan» combustible, y hasta que no han calentado sus materiales por la fricción con la atmósfera y éstos no se han dilatado no se sellan las juntas entre los paneles. También es conocido los problemas de temperatura en el parabrisas del SR-71 o del X-15. Pues imaginad si quisiéramos volar aún más rápido.

Los misiles o los vehículos hipersónicos pueden desplazarse a través de la atmósfera a velocidades superiores a 5 veces la del sonido. Pero a esas velocidades, las cosas se calientan tanto que muchos materiales se derretirían. Y los que no se funden, se deforman mucho.

«Pasas de algo afilado a algo más redondeado», dijo John Sharon del Centro de Investigación Tecnológica de RTX, «y cuando pasas de afilado a redondeado, aumentas la resistencia y terminas ralentizando el vehículo, lo que afecta a cuán rápido y lejos podemos volar».

La Agencia de Proyectos de Investigación Avanzada de Defensa (DARPA) quiere resolver ese problema, por lo que pidió a investigadores de todo el país sus ideas.

Sharon y su equipo tenían una idea simple pero intrigante: hacer que el misil sude.

Así como los humanos usamos los poros para enfriar nuestros cuerpos, el equipo buscaba demostrar que los poros artificiales, llamados canales de refrigeración por transpiración, en la punta del misil podrían hacer lo mismo.

«La refrigeración por transpiración ha existido durante años. La naturaleza ya lo ha descubierto: los árboles lo usan y nosotros usamos nuestra piel», dijo Sharon. «Pero, ¿cómo lo aprovechamos para otras aplicaciones de ingeniería?».

A DARPA le gustó la idea y otorgó al centro de investigación un contrato para modelar, prototipar y probar su concepto junto con otros equipos universitarios e industriales en el marco del programa MACH.

«Cuando surgió la oportunidad, hicimos algunos cálculos rápidos y dijimos: ‘¿Esto parece que funcionará?’ y la respuesta fue ‘Sí'», dijo Sharon. «Entonces fue realmente cuestión de profundizar y hacer una modelización y simulación detallada».

Su concepto funciona colocando un compuesto en la punta del misil que se calienta y genera vapor. El gas luego se empuja a través de miles de finos capilares de transpiración.

El prototipo de pruebas es una pieza en forma de cuña de metal resistente al calor y es ligeramente más grande que una tarjeta de crédito. Para hacer los canales de enfriamiento lo más pequeños y eficientes posible, el equipo de Sharon colaboró con Collins Aerospace, una empresa de RTX, utilizando su experiencia en micromecanizado, un método avanzado de fabricación que utiliza láseres para crear piezas intrincadas.

Para demostrar que funcionaría, el equipo primero probó la cuña en un dispositivo quemador en el centro de investigación en East Hartford, Connecticut.

«Básicamente, es una gran antorcha de crème brûlée», dijo Sharon.

El dispositivo de quemador dirige una antorcha alimentada con gas natural y oxígeno hacia el prototipo de pruebas para imitar los cambios de temperatura que ocurrirían a velocidades hipersónicas. Una vez que el equipo tuvo confianza en el rendimiento del prototipo, realizaron pruebas más detalladas en una instalación que utiliza un arco eléctrico para calentar y expandir gases a altas temperaturas y velocidades, simulando las condiciones de vuelo muy rápido.

Los ensayos ofrecieron resultados preliminares de que el concepto funcionaría, pero Sharon dijo que necesitarán más investigación y mejoras antes de que la refrigeración por transpiración esté lista para ser utilizada en misiles hipersónicos. Los desafíos restantes incluyen descubrir cómo hacer que los canales sean aún más pequeños y determinar si sus hallazgos en un prototipo del tamaño de una tarjeta de crédito son escalables a un vehículo hipersónico de tamaño completo.

Sharon dijo que cree que lo que han aprendido podría tener aplicaciones para varios productos de RTX, incluyendo la refrigeración de las palas de la turbina de los motores de las aeronaves, y demostró que su modelización predictiva era fiable.

«Cuando vuelas a más de cinco veces la velocidad del sonido, la temperatura puede aumentar muy rápidamente, en una fracción de segundo», dijo Sharon. «Las personas del equipo involucradas en la modelización hicieron un trabajo increíble estimando cuánto tiempo sobreviviría el prototipo».

Encontrar respuestas a preguntas como esta es por lo que Sharon se unió al centro de investigación. Después de obtener su doctorado, lo vio como una oportunidad para aplicar investigaciones de vanguardia en la industria aeroespacial y de defensa.

«Demostrarlo en el laboratorio ha sido genial», dijo. «El siguiente paso siempre es tratar de decir: ‘¿Cómo podría un cliente adaptar esto y rendir mejor?'»

Fuentes: RTX, vía Space Daily

Langley Twin: el avión de contrachapado de caoba

La escasez de materiales considerados estratégicos llevó a desarrollar aeronaves en otros materiales poco convencionales. De sobra es conocido el ejemplo del De Havilland Mosquito. O del Spitfire en material compuesto del año 41. Y este era el caso de esta belleza de caoba contrachapada y resina plástica.

La técnica era ya conocida antes de la Primera Guerra Mundial, y fue utilizada en el Deperdussin Monococque. Consistía en apilar las hojas de contrachapado de madera en distintos ángulos y aglomerarlas con una matriz de resina o plástico, como actualmente se hace con la fibra de carbono o de vidrio.

Construido con chapas de caoba impregnadas con vinilo y fenol para evitar utilizar materiales estratégicos como el aluminio, el Langley 2-4, se ha descrito como Langley Monoplane o Langley Twin.

Era un avión utilitario bimotor construido en los Estados Unidos y volado por primera vez en 1940. Nombrado en honor a Samuel Pierpont Langley, el avión fue diseñado por Arthur Draper y Martin Jensen.

Su diseño era convencional: un monoplano voladizo de ala baja con colas gemelas y tren de aterrizaje con ruedas de cola.

En el proceso de fabricación del Langley, las láminas de madera contrachapada no se prefabrican antes de ensamblar, ni se doblan ni se unen a largueros o mamparos, como ocurre con otros tipos de construcción, sino que se hacía con finas tiras de chapa tratada con plástico en una unidad integral que formaba una estructura monocasco. Sus espesores variaban de 1/64″ a 1/8″.

El fuselaje, las alas, las superficies de control y los carenados del motor se unen sin el uso de remaches, pernos o tornillos y tuercas. En su lugar se utilizan piezas que se insertan en los troqueles previstos en la estructura para su unión, y se encolan con calor y presión, utilizando técnicas de apilado y de curado similares a las actuales técnicas manuales para fibra de carbono, aunque a temperaturas mucho más bajas, unos 60º.

La estructura resultante es simple, fácil de inspeccionar y económica de mantener y reparar. Cada capó del motor, la punta del ala y la nariz del fuselaje se pueden quitar como una unidad.

Los capós y cortafuegos están moldeados con un revestimiento integral de asbesto.

La madera contrachapada de plástico es resistente a la corrosión por ácidos, álcalis, agua salada y hongos.

Se hicieron dos prototipos, el 2-4-65, que voló en 1940 y el 2-4-90 que voló en 1941.

El primero de ellos (NX29099), como indica el -65, motores de 65 hp, y el otro (29-90NC/N51706) con motores de 90 hp.

La Marina de los Estados Unidos compró la segunda máquina y la evaluó como XNL-1 (39056), pero no ordenó la compra del modelo.

John Pierce y Hurley Boehler tenían un fuselaje Stinson 108 en su hangar sin alas, por lo que decidieron comprar el Langley y, tras el accidente, sus alas, góndolas de motor y tren de aterrizaje principal se acoplaron a un fuselaje Stinson 108 para crear un único avión de fabricación casera único en su tipo llamado Pierce ArrowN6622A.

Una vez que Estados Unidos entró en guerra, se supo que las resinas necesarias para la construcción eran mucho más escasas que el metal que se habría necesitado para producir un avión por medios convencionales, y el proyecto se abandonó.

El XNL-1 se vendió como excedente de guerra. Estuvo volando hasta que quedó destruido en un aterrizaje en 1965.

Especificaciones

  • 2-4-65
    • Motores: 2 × Franklin 4AC, 65 hp (49 kW)
    • Longitud: 20 pies 8 pulgadas (6,30 m)
    • Envergadura: 35 pies 2 pulgadas (10,72 m)
    • Peso máximo al despegue: 1155 lb
    • Velocidad máxima: 216 km/h
    • Velocidad de crucero: 185 km/h
    • Velocidad de pérdida: 80 km/h
    • Alcance: 400 millas (640 km)
    • Techo de servicio: 13.300 pies (4.100 m)
    • Distancia de despegue: 200 pies
    • Tripulación: un piloto
    • Capacidad: tres pasajeros
  • 2-4-90 / NL-1
    • Motores: 2 × Franklin, 90 hp
    • Envergadura: 35 pies 2 pulgadas (10,72 m)
    • Longitud: 20 pies 8 pulgadas (6,30 m)
    • Peso vacío: 1738 lb
    • Peso cargado: 2850 libras
    • Velocidad máxima: 138 mph
    • Velocidad de crucero: 117 km/h
    • Velocidad de pérdida: 90km/h
    • Alcance: 350 millas a 100 mph
    • Tripulación: un piloto
    • Capacidad: tres pasajeros

Fuentes

Un Spitfire fabricado en material compuesto… en 1941

Fuselaje de Spitfire construido en material compuesto

Y no, no se trata de una réplica del Spitfire fabricada en el siglo XXI que ha llegado a los años 40 del siglo XX a través de una singularidad al más puro estilo de El final de la cuenta atrás. ¿Nos acompañáis?

Introducción

Primero convendría definir que es un material compuesto, porque la gente cuando oye hablar de materiales compuestos piensa en fibra de carbono, pero hay más.

Empezaremos diciendo que hay materiales de distinto tipo, aunque en aviación se han utilizado básicamente madera, metal, y material compuesto.

¿Recordáis cuando nos explicaban las mezclas y nos hablaban de mezclas homogéneas y heterogéneas? Pues más o menos así podríamos diferenciar los materiales compuestos.

Una aleación está formada por distintos materiales combinados en uno nuevo. Pero el resultado es una mezcla homogénea, no se puede distinguir a simple vista un material de otro. En el acero no podemos separar de un vistazo el hierro y el carbono.

En un material compuesto, sin embargo, sí podemos hacer esa diferenciación. Así pues, en las puertas de contrachapado con núcleo de nido de abeja de cartón, los materiales se pueden distinguir a simple vista. Lo mismo ocurre en los laminados de contrachapado utilizados en el mosquito, o en los materiales tipo sándwich, donde existe un núcleo, sea nido de abeja, espuma de foam u otros, revestido por dos capas de tela. O con el plástico reforzado con fibras en forma de tela, cinta o fieltro. O el Glare, y sus capas de aluminio y fibra de vidrio. O el tradicional adobe, fabricado con arcilla y paja.

Material compuesto: sándwich. Un núcleo revestido por dos pieles.
Esquema del GLARE, capas de aluminio y fibra de vidrio, y explicación de sus ventajas. En caso de grieta la fibra mantiene la continuidad del camino de carga.

Y la ventaja del material compuesto es, precisamente, que al unirlos se obtienen mejores propiedades que las que tienen por separado.

Gordon Aerolite

Norman Adrian de Bruyne, un brillante doctor, investigador y químico británico había publicado muchos de sus estudios en revistas especializadas, pero su compañía Aero Research Ltd apenas había recibido encargos. Por ello decidió publicar varios artículos en revistas más populares entre los ingenieros y no tan especializadas en química, como The Aeroplane o Aircraft engineering.

La estratagema publicitaria funcionó y de Bruyne fue contactado en 1936 por Havilland Aircraft Company para investigar si era posible fabricar palas para hélices de paso variable con resinas fenólicas reforzadas. Como la densidad de los plásticos era del orden de la mitad que la del aluminio, se esperaba que las hélices no solo fueran más ligeras, sino que los esfuerzos en la raíz de las palas de la hélice se redujeran considerablemente.

De las investigaciones realizadas para De Havilland nació su paper Plastic Materials for Aircraft Construction, publicado en 1937 por la Real Sociedad Aeronáutica británica sobre el uso de estos materiales, y el éxito obtenido con la baquelita reforzada con fibras de lino para la fabricación de hélices.

Hélice de baquelita reforzada

Durante la presentación del paper en la sociedad introdujo el término Aerolite para referirse a la baquelita reforzada con lino. El Aerolite era una resina reforzada por fibras unidireccionales de lino, cuyas capas se apilaban a 0º/90º o ±45º. Su densidad era la mitad de la del duraluminio, pero tenía una resistencia a tracción de 500MPa (equivalente a la del 2024T3), y un módulo elástico de 50GPa (más flexible que el aluminio, que es de unos 70GPa).

Estas investigaciones le supusieron ganar la medalla de oro de Simm, de la Real Sociedad Aeronáutica. Y un contrato, en 1938, con el Ministerio del Aire para producir un larguero para el ala del Bristol Blenheim.

Para el ala del Blenheim, De Bruyne se inspiró en el metacarpio de los buitres

El gran desafío era desarrollar una pieza de unos 10 metros de largo… cuando hasta ahora las piezas de Aerolite no llegaban al medio metro. Para poder cumplir el encargo, De Bruyne adquirió una prensa de gran tamaño en Alemania. Y fue a recogerla en persona, para asegurarse de que llegara a Reino Unido.

Con la caída de Francia, principal proveedor de bauxita de Reino Unido, llegaría el miedo del desabastecimiento de aluminio, y el encargo del Ministerio del Aire de desarrollar un fuselaje de Spitfire en Aerolite.

El Spitfire «de plástico»

Construcción del fuselaje de Aerolite

Sería en 1940 cuando el Aerolite tuvo su gran oportunidad para demostrar la valía. Un gran contrato para Aero Research Limited: fabricar prácticamente un fuselaje completo en su material compuesto de baquelita y lino para realizar ensayos y demostrar que podía ser, al menos, tan bueno como el aluminio.

Planos del Spitfire, ampliar la imagen para ver en el perfil la numeración de las cuadernas

El aerolite se fabricaba en forma de cinta unidireccional de 6 pulgadas de ancho, que era apilada en dos sentidos distintos para formar las piezas. Como en los modernos materiales compuestos, y en las piezas de contrachapado de la época (no olvidemos que los laminados de contrachapado se habían utilizado en aviación desde antes de la Primera Guerra Mundial en varios aviones), había que apilar solapando unas cintas con otras, y añadiendo capas hasta alcanzar el espesor necesario. Después el paquete era sometido a presión y calor para que el plástico termoestable curara, y la pieza alcanzara su forma final.

Para realizar el fuselaje, se pensó que la forma más rápida de hacerlo sería la sustitución directa de piezas de aluminio por otras de Aerolite. Así que el fuselaje no fue rediseñado, ni se utilizaron uniones pegadas. Simplemente se cambiaron las piezas remachadas de aluminio por otras piezas remachadas de material compuesto.

Numeración de las cuadernas del Spit
Fondo del fuselaje, mirando desde la cuaderna 9 a las 8, 7, 6, 5
Cuadernas 9, 10 y 11, vistas desde la 11.

Antes de emprender la construcción del fuselaje completo, se construyó una pequeña parte, la comprendida entre las cuadernas 19 y 25, para ensayarla y compararla contra otra sección equivalente fabricada en aluminio.

Los ensayos se llevaron a cabo en el Royal Aircraft Establishiment. Sus resultados llevaron a que algunas partes del fuselaje, como el registro para las baterías, fueran especialmente reforzados. El larguero del ala y su encastre seguirían siendo de aluminio.

Zona del encastre del ala, con el larguero principal en aluminio

Además de ensayar el Aerolite, se sometieron a prueba otros materiales utilizados en la construcción del fuselaje. Por ejemplo los carenados entre las cuadernas 18 y 19 se hicieron de acetato y celulosa. Otras zonas no estructurales fueron realizadas con fenolformaldeido reforzado con algodón.

Fuselaje entre las cuadernas 5 y 19. Es visible la sección central metálica del principal metálico.

La sección de fuselaje ensayada iba entre las cuadernas 5 y la 19. El peso era comparable al de la estructura de aluminio, a pesar de la baja densidad del Aerolite, debido a tener que añadir más capas para igualar la rigidez, y a que no se utilizaban soluciones pegadas, así que el peso de los remaches no se eliminaba de la ecuación.

Las cuadernas más pesadas eran aquellas con forma de U, para hacer hueco al cockpit, eran dobles y ambas mitades estaban remachadas. Cada cuaderna estaba fabricada en cuatro partes, haciendo necesario un refuerzo en cada unión. Allí donde fuera necesario garantizar la continuidad estructural, como en las uniones de las piezas que formaban las cuadernas, se utilizaban refuerzos (straps en los libros de aeronáutica) remachados de 0.05in (1.27mm).

Tras fabricar toda la estructura interna, se añadió el revestimiento. El revestimiento estaba formado por tablones (tracas, creo que lo llaman los navales) de espesor variable que iban de la cuaderna 5 a la 19. Entre las cuadernas 5 y 8 el espesor era de 0.11in (2.8mm), y se reducía entre la 8 y la 19 de forma progresiva hasta llegar a un espesor de 0.045in (1.14mm). Una moldura se instalaba entre las juntas planas de cada traca, para mejorar la aerodinámica. Y los remaches, por supuesto, de cabeza avellanada, para no sobresalir del revestimiento.

Conclusión

Finalmente la escasez de aluminio no se produjo y, aunque los ensayos fueron bastante satisfactorios, no fue necesario utilizar esta nueva, y poco probada, tecnología en la fabricación de aviones. El aluminio se podía conseguir sin problemas, y su fabricación era más rápida, pudiendo recurrir a máquinas de mecanizado, en lugar de al apilado manual de las capas de Aerolite y su posterior prensado y curado.

Aunque nunca fue necesario reemplazar el aluminio con Aerolite, se fabricaron unos 30 empenajes para otras tantas Miles Magister.

¡Ah! Y no, fabricar el Spitfire con este material no lo hubiera hecho furtivo. La Maravilla de madera tampoco lo era. Los grandes discos de las hélices y todas las superficies verticales y unidas a 90º los hubieran hecho fáciles de detectar. Otro cantar era el famoso diseño de Horten, mayormente plano, sin hélices ni superficies verticales, en cuyo caso el ser de contrachapado apilado en distintas direcciones sí hubiera contribuido a un mejor rendimiento furtivo.

Fuentes