¿Cómo refrigerar un vehículo hipersónico? Haciéndolo sudar.

Los investigadores de RTX validan la «refrigeración por transpiración» en una prueba para DARPA.

Tras la barrera del sonido está la barrera del calor. De sobra son conocidos los problemas de algunas de las aeronaves más rápidas porque en frío «sudan» combustible, y hasta que no han calentado sus materiales por la fricción con la atmósfera y éstos no se han dilatado no se sellan las juntas entre los paneles. También es conocido los problemas de temperatura en el parabrisas del SR-71 o del X-15. Pues imaginad si quisiéramos volar aún más rápido.

Los misiles o los vehículos hipersónicos pueden desplazarse a través de la atmósfera a velocidades superiores a 5 veces la del sonido. Pero a esas velocidades, las cosas se calientan tanto que muchos materiales se derretirían. Y los que no se funden, se deforman mucho.

«Pasas de algo afilado a algo más redondeado», dijo John Sharon del Centro de Investigación Tecnológica de RTX, «y cuando pasas de afilado a redondeado, aumentas la resistencia y terminas ralentizando el vehículo, lo que afecta a cuán rápido y lejos podemos volar».

La Agencia de Proyectos de Investigación Avanzada de Defensa (DARPA) quiere resolver ese problema, por lo que pidió a investigadores de todo el país sus ideas.

Sharon y su equipo tenían una idea simple pero intrigante: hacer que el misil sude.

Así como los humanos usamos los poros para enfriar nuestros cuerpos, el equipo buscaba demostrar que los poros artificiales, llamados canales de refrigeración por transpiración, en la punta del misil podrían hacer lo mismo.

«La refrigeración por transpiración ha existido durante años. La naturaleza ya lo ha descubierto: los árboles lo usan y nosotros usamos nuestra piel», dijo Sharon. «Pero, ¿cómo lo aprovechamos para otras aplicaciones de ingeniería?».

A DARPA le gustó la idea y otorgó al centro de investigación un contrato para modelar, prototipar y probar su concepto junto con otros equipos universitarios e industriales en el marco del programa MACH.

«Cuando surgió la oportunidad, hicimos algunos cálculos rápidos y dijimos: ‘¿Esto parece que funcionará?’ y la respuesta fue ‘Sí'», dijo Sharon. «Entonces fue realmente cuestión de profundizar y hacer una modelización y simulación detallada».

Su concepto funciona colocando un compuesto en la punta del misil que se calienta y genera vapor. El gas luego se empuja a través de miles de finos capilares de transpiración.

El prototipo de pruebas es una pieza en forma de cuña de metal resistente al calor y es ligeramente más grande que una tarjeta de crédito. Para hacer los canales de enfriamiento lo más pequeños y eficientes posible, el equipo de Sharon colaboró con Collins Aerospace, una empresa de RTX, utilizando su experiencia en micromecanizado, un método avanzado de fabricación que utiliza láseres para crear piezas intrincadas.

Para demostrar que funcionaría, el equipo primero probó la cuña en un dispositivo quemador en el centro de investigación en East Hartford, Connecticut.

«Básicamente, es una gran antorcha de crème brûlée», dijo Sharon.

El dispositivo de quemador dirige una antorcha alimentada con gas natural y oxígeno hacia el prototipo de pruebas para imitar los cambios de temperatura que ocurrirían a velocidades hipersónicas. Una vez que el equipo tuvo confianza en el rendimiento del prototipo, realizaron pruebas más detalladas en una instalación que utiliza un arco eléctrico para calentar y expandir gases a altas temperaturas y velocidades, simulando las condiciones de vuelo muy rápido.

Los ensayos ofrecieron resultados preliminares de que el concepto funcionaría, pero Sharon dijo que necesitarán más investigación y mejoras antes de que la refrigeración por transpiración esté lista para ser utilizada en misiles hipersónicos. Los desafíos restantes incluyen descubrir cómo hacer que los canales sean aún más pequeños y determinar si sus hallazgos en un prototipo del tamaño de una tarjeta de crédito son escalables a un vehículo hipersónico de tamaño completo.

Sharon dijo que cree que lo que han aprendido podría tener aplicaciones para varios productos de RTX, incluyendo la refrigeración de las palas de la turbina de los motores de las aeronaves, y demostró que su modelización predictiva era fiable.

«Cuando vuelas a más de cinco veces la velocidad del sonido, la temperatura puede aumentar muy rápidamente, en una fracción de segundo», dijo Sharon. «Las personas del equipo involucradas en la modelización hicieron un trabajo increíble estimando cuánto tiempo sobreviviría el prototipo».

Encontrar respuestas a preguntas como esta es por lo que Sharon se unió al centro de investigación. Después de obtener su doctorado, lo vio como una oportunidad para aplicar investigaciones de vanguardia en la industria aeroespacial y de defensa.

«Demostrarlo en el laboratorio ha sido genial», dijo. «El siguiente paso siempre es tratar de decir: ‘¿Cómo podría un cliente adaptar esto y rendir mejor?'»

Fuentes: RTX, vía Space Daily

Deja una respuesta