B-52, SaRo Princess y otros bichos voladores con motores nucleares

No es la primera vez que hablamos de aviones nucleares. Fueron de los primeros textos que publicamos en la web, cuando el blog ni siquiera existía, un par de traducciones -posiblemente hoy las haríamos mucho mejor, sobre bombarderos nucleares estadounidenses y soviéticos. Hoy os traemos unos cuantos pájaros más que se propusieron como potenciales receptores de motores nucleares.

En 1946, el Departamento de Defensa (DoD) inició un proyecto conjunto entre la Comisión de Energía Atómica y la Fuerza Aérea conocido como Programa de Propulsión Nuclear de Aeronaves.

Basado en los requisitos establecidos por el DoD, el programa ANP, conocido también como el Programa de Propulsión Nuclear de Aeronaves Tripuladas, debía desarrollar un avión de propulsión nuclear para fines militares. El reactor y los blindajes correspondientes eran responsabilidad de la AEC, mientras que la USAF se encargaba de la estructura del avión, la turbomaquinaria y los componentes auxiliares.

La razón para continuar con el programa ANP fue proporcionar nuevos enfoques para la propulsión de aeronaves tripuladas mediante el uso de la fisión nuclear como fuente de energía, superando así las limitaciones de alcance y resistencia de las aeronaves propulsadas químicamente (motores de explosión). Básicamente, en la época en la que la energía nuclear se consideraba que sería la panacea que salvaría al mundo y que podía utilizarse para propulsar barcos, submarinos, coches o aviones, se pensó que podría ser la mejor forma de conseguir bombarderos y aviones de reconocimiento con una autonomía virtualmente infinita.

Perfil de misión típico

Los principales componentes del avión de propulsión nuclear eran el sistema de propulsión y la estructura del avión. Cinco grandes contratistas trabajaron en el programa ANP. Los contratistas de propulsión fueron General Electric Company, Aircraft Nuclear Propulsion Department y Pratt & Whitney Aircraft Division de United Aircraft Corporation. Los contratistas de fuselajes fueron la División Convair de General Dynamics Corporation y la División de Georgia de Lockheed Aircraft Corporation. La Union Carbide Nuclear Company, operadora del Laboratorio Nacional de Oak Ridge, fue el contratista principal en el área de apoyo general.

Se pueden atribuir una serie de logros al programa ANP de mil millones de dólares antes de su terminación en 1961.

Convair voló con éxito un reactor nuclear funcional en el prototipo NB-36H, aunque el reactor nunca propulsó el avión en vuelo. En octubre de 1960, Convair recibió un contrato para continuar con el trabajo en el NX-2, un diseño de aeronave que podría demostrar las capacidades de una central eléctrica de propulsión nuclear y GE construyó el turborreactor de propulsión nuclear XNJ140E-1 y su contraparte de propulsión química. el X211. Como parte de la parte de las pruebas de aplicaciones avanzadas, GE propuso el uso de un banco de pruebas volador para exponer los motores a su entorno operativo mucho antes de su uso como un sistema de propulsión real.

C-133 Nuclear

Las aeronaves evaluadas como posibles bancos de pruebas incluyeron Lockheed C-130 Hercules, Douglas C-133A Cargomaster, Boeing KC-135 Stratotanker, Boeing B-52G Stratofortress y Convair B-58 Hustler. De estos, se seleccionó el Boeing B-52G porque cumplía con los requisitos de carga y espacio para probar el motor XNJ140E-1, y sus características de rendimiento permitían realizar pruebas en las condiciones de vuelo esperadas del NX-2. Se estudiaron tres configuraciones para montar el motor de prueba y GE prefirió montar el motor lateralmente en la parte trasera del fuselaje.

La unidad de propulsión General Electric XNJ140E-1 utilizaría un solo X211 acoplado a un reactor de óxido de berilio con un peso aproximado de 60,600 libras; 18.320 libras para el turborreactor y 42.230 para el reactor nuclear, el blindaje y los controles.

Formado por 25.000 tubos hexagonales hechos de uranio que contiene berilio estabilizado con itria, el reactor tenía una capacidad de al menos 121 megavatios para el despegue, proporcionando 35.310 libras de empuje mientras volaba a Mach 0,64 a 25.000 pies con una autonomía limitada solo por la tolerancia a la dosis de radiación de la tripulación.

Se requeriría una protección mínima contra la radiación para sistemas específicos y la tripulación del B-52G, ya que se esperaba que el tiempo total de funcionamiento de la propulsión nuclear fuera inferior a 1000 horas.

GE estudió la adaptabilidad de la estructura del avión B-52G en tres combinaciones diferentes de reactores nucleares y motores químicas. El primer estudio consistió en el B-52 modificado para incluir una planta de energía nuclear GE XNJ140E-1 mientras se conservaban los ocho Pratt & Whitney J57. Esta opción proporcionaría el mejor margen de seguridad ya que el B-52G usaría los ocho J57 para operaciones de vuelo normales, mientras que podría probar el motor nuclear en condiciones de vuelo específicas.

La segunda configuración constaba de los ocho J57 con un motor de propulsión nuclear XNJ140E-1 montado en un lado y un X211 de propulsión química en el lado opuesto. El propósito de esta prueba era comparar el motor nuclear con su equivalente de propulsión química en condiciones de despegue y vuelo.

La tercera configuración constaba de dos centrales nucleares XNJ140E-1 y cuatro J57. El propósito era explorar la viabilidad del vuelo de propulsión totalmente nuclear. Retener cuatro J57 permitiría mantener un margen de seguridad durante el despegue o si el motor nuclear quedaba inoperativo o había que apagarlo.

El bombardero de Convair

De haber tenido éxito los ensayos con el B-52, la siguiente fase hubiera sido un nuevo bombardero. Convair también estudió distintas configuraciones en un avión poco convencional, con un gran canard delantero y con los timones situados en grandes wiglets en las puntas de las alas. Podía montar tres o cuatro motores nucleares de ciclo abierto, cargar misiles nucleares bajo las alas más un compartimento interno de bombas, y podía permanecer en el aire cinco días. Una vez más la autonomía no venía determinada por el combustible, si no por la resistencia de la tripulación a la radiación. Además de los motores nucleares montaba motores químicos con postquemadores, que serían los responsables del empuje durante las fases de despegue y aterrizaje.

El hidroavión gigante Saunders Roe Princess

En 1958 Estados Unidos subvencionó un estudio para convertir el gigantesco Saunders Roe Princess en un avión nuclear. Las compañias que participaron fueron la propia SaRo, Convair y Martin Co.

El gigantesco hidroavión, nacido al final de la Segunda Guerra Mundial y pensando en recuperar las viejas rutas cubiertas por hidroaviones había nacido ya desfasado, por el propio concepto en sí mismo, y además estuvo plagado de problemas de desarrollo de los propios turbohélices que montaba, ocho acoplados de dos en dos. Y había tres prototipos que podían utilizarse en la conversión. Por un lado el fuselaje era suficientemente amplio para dar cabida al reactor nuclear. Por otro, era una buena forma de lograr una plataforma de reconocimiento y patrulla marítima de grandísima autonomía, y con mucha capacidad para instalar a la tripulación y los equipos necesarios. Como de costumbre, debía contar con motores de combustión para el despegue y el aterrizaje.

Otros proyectos

La lista de proyectos en los que se pensó utilizar el motor nuclear es casi interminable. Desde misiles a aviones supersónicos de ataque. Por eso vamos a decidirnos a cerrar con el que tal vez sea más espectacular de todos, dedicado a la exploración interplanetaria.
Aunque en estos casos, apenas hay más que algunas visiones artísticas de cómo podían haber sido los vehículos.

Conclusiones

La propulsión nuclear se estudió durante este período de tiempo para todo tipo de transporte, incluidos barcos de guerra y submarinos, helicópteros, hidroalas, cohetes y misiles. La complejidad, el costo y las preocupaciones de seguridad finalmente impidieron el uso de propulsión nuclear en todos los vehículos de vuelo atmosférico. La eficiencia de los motores turborreactores y las capacidades de reabastecimiento de combustible en vuelo reemplazaron los pocos beneficios que podrían lograrse a través del vuelo con propulsión nuclear.

Fuentes

Para ampliar mucho:

XNJ140E Nuclear Turbojet, Section. 4 Reactor

This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company.

XNJ140E Nuclear Turbojet, Section 5, Shield; Section 6, Turbomachinery; Section 7. Control System

This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company.

Special Purpose Application Reactors: Systems Integration Decision Support

Microreactors, also known as very-Small Modular Reactors (vSMRs) or Special Purpose Reactors (SPRs), are being considered for use in unique applications where other methods of megawatt level energy production are uneconomical or unavailable. For the purposes of this report, a microreactor is defined as meeting the following criteria: • Factory manufacturable • Easily transportable by truck, plane, train, and/or ship • Produce no more than 20 megawatt thermal (MWth) energy, in order to qualify as Hazard Category 2 under 10CFR830 • Maintains neutronic simplicity, allowing semi- or fully-autonomous operation In the United States (U.S.), there are two general types ofmore »

Molten Salt Reactor Salt Processing – Technology Status

This report presents a summary of 752 citations related to molten salt reactor development at Oak Ridge National Laboratory (ORNL). This effort was initiated with a focused purpose of locating technical information related to the chemical processing of fluoride salts to support the Th-232/U-233 fuel-cycle molten-salt breeder reactor. However, it soon became apparent that technical information on chemical processing was spread throughout numerous reports spanning decades of time. Therefore, the search effort was broadened to include any information deemed relevant to MSR development at ORNL. In addition, this report provides an overview of the engineering requirements of a chemical processingmore »

Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program, Program Summary and References

This is one of twenty-one volumes sumarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume discusses the background to the General Electric program, and summarizes the various direct-air-cycle nuclear test assemblies and power plants that were developed. Because of the requirements of high performance, low weight, and small size, vast improvements in existing technology were required to meet the flight objectives. The technological progress achieved during the program is also summarized. The last appendix contains a compilation of the abstracts, tables of contents, and reference lists of the other twenty volumes.

Aerothermodynamics, Comprehensive Technical Report, Direct Air Cycle, General Electric’s Air Craft Nuclear Propulsion Program

This is one of twenty-one volumes summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume summarizes the methods and techquies developed for use in the thermal design of nuclear reactors associated with that program.

Metallic Fuel element Materials, Comprehensive Technical Report, General Electric Direct-Air-Cycle, Aircraft Nuclear Propulsion Program

This is one of twenty-one volumes summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This portion describes work on Metallic Fuel Element Materials.

REACTOR AND SHIELD PHYSICS. Comprehensive Technical Report, General Electric Direct-Air-Cycle, Aircraft Nuclear Propulsion Program.

This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume describes the experimental and theoretical work accomplished in the areas of reactor and shield physics.

INTRODUCTION TO NUCLEAR PROPULSION. LECTURE 1. INTRODUCTION AND BACKGROUND

¿Cómo refrigerar un vehículo hipersónico? Haciéndolo sudar.

Los investigadores de RTX validan la «refrigeración por transpiración» en una prueba para DARPA.

Tras la barrera del sonido está la barrera del calor. De sobra son conocidos los problemas de algunas de las aeronaves más rápidas porque en frío «sudan» combustible, y hasta que no han calentado sus materiales por la fricción con la atmósfera y éstos no se han dilatado no se sellan las juntas entre los paneles. También es conocido los problemas de temperatura en el parabrisas del SR-71 o del X-15. Pues imaginad si quisiéramos volar aún más rápido.

Los misiles o los vehículos hipersónicos pueden desplazarse a través de la atmósfera a velocidades superiores a 5 veces la del sonido. Pero a esas velocidades, las cosas se calientan tanto que muchos materiales se derretirían. Y los que no se funden, se deforman mucho.

«Pasas de algo afilado a algo más redondeado», dijo John Sharon del Centro de Investigación Tecnológica de RTX, «y cuando pasas de afilado a redondeado, aumentas la resistencia y terminas ralentizando el vehículo, lo que afecta a cuán rápido y lejos podemos volar».

La Agencia de Proyectos de Investigación Avanzada de Defensa (DARPA) quiere resolver ese problema, por lo que pidió a investigadores de todo el país sus ideas.

Sharon y su equipo tenían una idea simple pero intrigante: hacer que el misil sude.

Así como los humanos usamos los poros para enfriar nuestros cuerpos, el equipo buscaba demostrar que los poros artificiales, llamados canales de refrigeración por transpiración, en la punta del misil podrían hacer lo mismo.

«La refrigeración por transpiración ha existido durante años. La naturaleza ya lo ha descubierto: los árboles lo usan y nosotros usamos nuestra piel», dijo Sharon. «Pero, ¿cómo lo aprovechamos para otras aplicaciones de ingeniería?».

A DARPA le gustó la idea y otorgó al centro de investigación un contrato para modelar, prototipar y probar su concepto junto con otros equipos universitarios e industriales en el marco del programa MACH.

«Cuando surgió la oportunidad, hicimos algunos cálculos rápidos y dijimos: ‘¿Esto parece que funcionará?’ y la respuesta fue ‘Sí'», dijo Sharon. «Entonces fue realmente cuestión de profundizar y hacer una modelización y simulación detallada».

Su concepto funciona colocando un compuesto en la punta del misil que se calienta y genera vapor. El gas luego se empuja a través de miles de finos capilares de transpiración.

El prototipo de pruebas es una pieza en forma de cuña de metal resistente al calor y es ligeramente más grande que una tarjeta de crédito. Para hacer los canales de enfriamiento lo más pequeños y eficientes posible, el equipo de Sharon colaboró con Collins Aerospace, una empresa de RTX, utilizando su experiencia en micromecanizado, un método avanzado de fabricación que utiliza láseres para crear piezas intrincadas.

Para demostrar que funcionaría, el equipo primero probó la cuña en un dispositivo quemador en el centro de investigación en East Hartford, Connecticut.

«Básicamente, es una gran antorcha de crème brûlée», dijo Sharon.

El dispositivo de quemador dirige una antorcha alimentada con gas natural y oxígeno hacia el prototipo de pruebas para imitar los cambios de temperatura que ocurrirían a velocidades hipersónicas. Una vez que el equipo tuvo confianza en el rendimiento del prototipo, realizaron pruebas más detalladas en una instalación que utiliza un arco eléctrico para calentar y expandir gases a altas temperaturas y velocidades, simulando las condiciones de vuelo muy rápido.

Los ensayos ofrecieron resultados preliminares de que el concepto funcionaría, pero Sharon dijo que necesitarán más investigación y mejoras antes de que la refrigeración por transpiración esté lista para ser utilizada en misiles hipersónicos. Los desafíos restantes incluyen descubrir cómo hacer que los canales sean aún más pequeños y determinar si sus hallazgos en un prototipo del tamaño de una tarjeta de crédito son escalables a un vehículo hipersónico de tamaño completo.

Sharon dijo que cree que lo que han aprendido podría tener aplicaciones para varios productos de RTX, incluyendo la refrigeración de las palas de la turbina de los motores de las aeronaves, y demostró que su modelización predictiva era fiable.

«Cuando vuelas a más de cinco veces la velocidad del sonido, la temperatura puede aumentar muy rápidamente, en una fracción de segundo», dijo Sharon. «Las personas del equipo involucradas en la modelización hicieron un trabajo increíble estimando cuánto tiempo sobreviviría el prototipo».

Encontrar respuestas a preguntas como esta es por lo que Sharon se unió al centro de investigación. Después de obtener su doctorado, lo vio como una oportunidad para aplicar investigaciones de vanguardia en la industria aeroespacial y de defensa.

«Demostrarlo en el laboratorio ha sido genial», dijo. «El siguiente paso siempre es tratar de decir: ‘¿Cómo podría un cliente adaptar esto y rendir mejor?'»

Fuentes: RTX, vía Space Daily

El dirigible del Co-fundador de Google tiene luz verde de la FAA para el primer vuelo

Sergey Brin, co-fundador de Google, fundó LTA (lighter than air) Research con intención de crear dirigibles que pudieran transportar personas o bienes en zonas remotas con malas comunicaciones y/o en caso de desastres naturales.

LTA ha estado diseñando y construyendo este dirigible de última generación en los últimos años. Su estructura está formada por mamparos de titanio y barras de fibra de carbono, y estará propulsado por 12 motores eléctricos.

Y gracias a IEEE sabemos que la FAA le ha concedido en septiembre un certificado de aeronavegabilidad especial, lo que significa que en breve empezará los ensayos en vuelo.

El certificado permite a LTA volar el Pathfinder 1 dentro de los límites de Moffett Field y el espacio aéreo del vecino aeropuerto de Palo Alto, a una altura de hasta 460 metros (1500 pies). Esto le permitirá aventurarse sobre el sur de la Bahía de San Francisco, sin interferir con los aviones que entran o salen de los aeropuertos comerciales de San José y San Francisco International.

El enorme dirigible inicialmente estará sujeto a un mástil de amarre móvil para pruebas en tierra al aire libre, antes de realizar 50 horas de vuelo a lo largo de unos 25 vuelos.

Doce motores eléctricos distribuidos en los laterales y la cola del dirigible impulsarán al dirigible, que alcanzará velocidades de hasta aproximadamente 120 kilómetros por hora. Una resistente capa de material laminado de Tedlar forma el revestimiento de la aeronave, y contiene en su interior 13 bolsas de helio de nylon ripstop. Estas bolsas tienen instalados sistemas lidar, para controlar el nivel de gas de su interior.

Pathfinder 1 cuenta con un sistema motor híbrido, con dos generadores diésel de 150 kilovatios que trabajan junto a 24 baterías para proporcionar energía a los motores eléctricos, según una reciente presentación del CEO de LTA, Alan Weston. Él afirmó que LTA tiene planes de utilizar hidrógeno en futuras versiones del dirigible, tal vez como combustible para futuras celdas de combustible o motores.

Aunque el Pathfinder 1 está diseñado para ser operado por un solo piloto, cuenta con doble-mando y, según la carta de LTA a la FAA, tendrá un segundo piloto a bordo «para las pruebas de vuelo iniciales hasta que se pueda evaluar la carga de trabajo del piloto». La góndola que LTA está utilizando para el dirigible fue diseñada por la famosa compañía Zeppelin en Alemania y puede acomodar hasta 14 personas, aunque durante las pruebas no se permitirán pasajeros.

Con una longitud de 407 pies (124 metros) y un diámetro de 66 pies (20 metros), es considerablemente más largo que el Airlander 10, aunque tiene menos de la mitad de su anchura, lo que le convierte en el mayor dirigible construido en los Estados Unidos desde el Makom. Puede que no califique como la aeronave más grande del mundo, pero sigue siendo absolutamente enorme, aproximándose al doble de la longitud de un Airbus A380. Y aun así, tan solo es una prueba de concepto de lo que vendrá después, el Pathfinder 3: Un dirigible de 984 pies (300 metros). Esto es incluso más grande que los gigantescos dirigibles de la clase Hindenburg de 804 x 135 pies (245 x 41 metros) de la década de 1930, que siguen siendo hasta el día de hoy las aeronaves más grandes jamás construidas.

En última instancia, LTA tiene la intención de utilizar sus aeronaves para misiones humanitarias, transportando carga y personal a áreas inaccesibles por carretera. Brin dirige una organización sin fines de lucro independiente de LTA, llamada Global Support and Development, que ya ha llevado a cabo dichas misiones por mar, en el Caribe, América Latina y el Pacífico Sur.

Comentarios

Si bien es cierto que la necesidad de infraestructuras necesarias para dar soporte en tierra a este tipo de aeronaves son escasas, sería interesante saber cómo se piensan solventar los problemas típicos de los dirigibles, que son algo difíciles de manejar en tierra y hace falta anclarlos. De hecho, por ese motivo en la última oleada que hubo de regreso al dirigible se apostaba por aeronaves híbridas, donde el 80% de la sustentación venía del helio y el resto de la forma de fuselaje sustentador de la aeronave.

Fuentes

Imágenes de los dos AG600M anfibios chinos de maniobras

China continúa con los ensayos de sus dos aviones anfibios de gran tamaño. Esta vez se les ha visto haciendo maniobras, simulando misiones realistas, integrándose con el resto de las unidades con las que en teoría colaborarán en un futuro, cuando estén en servicio. Además son las primeras fotos que, al menos en Sandglass Patrol, vemos con las dos aeronaves juntas.

El AG600M, turbohélice de cuatrimotor de Avic, continuará sometiéndose a pruebas de vuelo y en tierra este año a medida que avanza hacia la obtención de la certificación de aeronavegabilidad. En la primera mitad de 2023, el programa de prueba AG600 completó 172 misiones de vuelo con tres aviones, acumulando 430 horas de vuelo. Estos ensayos se llevaron a cabo en varias ciudades chinas, incluidas Zhuhai, Pucheng, Jingmen, Anshun, Liupanshui y Xichang.

El primer prototipo voló por primera vez el 30 de agosto de 2022, y el segundo el 10 de septiembre. El primer despegue desde el agua se producía a mediados de septiembre de 2022.

Después de esta aprobación anticipada, se espera que entre en servicio anti incendios este año en China, que la CAAC lo certifique en 2024 y que se comercialice fuera de China a partir de 2025.

  • Características
    • Capacidad: 50 rescatados o 12000kg de agua
    • Longitud: 36,9 m
    • Envergadura: 38,8 m
    • Altura: 12,1 m
    • Peso máximo al despegue:
      • 53 500 kg desde tierra
      • 49 800 kg desde mar agitado
    • Planta motriz: 4 × turbohélices WJ-6
  • Prestaciones
    • Velocidad máxima: 560 km/h (350 mph, 300 nudos)
    • Velocidad de crucero rápido: 500 km/h (310 mph, 270 nudos)
    • Alcance: 4500 km (2800 mi, 2400 nmi)
    • Autonomía: 12h
    • Techo de servicio: 6.000 m (20.000 pies)
    • Carrera de despegue: 1500 m (4900 pies) de agua

Vía @knktlw

Atravesar en vuelo una ventana en la roca (¿Cómo de bajo puedes volar XL)

Alcanzamos la entrada número 40 de esta nuestra serie de maniobras a baja cota, pasaditas y locuras varias. El vídeo tiene diez años,y después de un paseo en vuelo por el desierto, a partir del minuto 2:40, podemos ver cómo atraviesan una de esas ventanas que a veces hay en las rocas.

El vídeo tiene diez años, pero se ha popularizado porque una cuenta de Tik Tok, primero,y esta cuenta de Twitter, después, han publicado el clip en el que la Cessna pasa el agujero. Está volando en Arches National Park, Utah

Si alguno está pensando en hacerlo con su avión, recordad, estas cosas mejor en un simulador de vuelo.