Robinson R44 completamente eléctrico completa vuelo entre dos aeropuertos

Vídeo de uno de los primeros vuelos del helicóptero eléctrico eR44

Si somos escépticos respecto a la aviación eléctrica, tanto más si ésta es de ala rotatoria. Hemos discutido en otras ocasiones acerca de la problemática de la baja densidad energética de las baterías y de los problemas para su recarga o incluso su cambio por otras en caliente. Aun así, entendemos que hay aplicaciones interesantes para este tipo de aeronaves, asumiendo que el alcance será relativamente limitado, más aún si tenemos en cuenta las reservas legales de autonomía, para poder desviarse a un alternativo en caso de problemas por ejemplo. Reduciéndose, por tanto, estas aplicaciones a aquellas en las que se realicen vuelos cortos entre puntos conocidos y concretos, donde les esperen con las baterías de recambio: uniones entre islas, traslados entre hospitales, o vuelos cortos entre aeródromos cercanos en regiones donde más vale un vuelo corto que muchas horas por caminos intransitables.

No obstante, el desarrollo del R44 eléctrico nos parece interesante por la aproximación que hacen, a través de un suplemento al certificado de tipo, en lugar de un desarrollo completo desde cero.

Tier 1 engineering ha optado por no desarrollar desde la nada un vehículo eléctrico, ahorrándose el tener que hacer el diseño completo y certificación de la célula, más el motor, baterías y sistemas de control, y se han centrado tan sólo en la parte eléctrica. Por ello han tomado una aeronave probada y fiable y han procedido a modificarla, electrificándola. Esta aproximación no sólo busca ahorrar costes y tiempos de desarrollo, sino que –en caso de que funcione y tenga éxito- puede venderse para reacondicionar muchos de los helicópteros que ya están en vuelo, abriendo un mercado entero basado en células ya existentes que se pueden comprar a un precio relativamente económico, de segunda mano.

El sistema promete un funcionamiento en cabina más silencioso que el tradicional de motor de combustión, así como reducir las vibraciones, y un mantenimiento mucho más sencillo, tanto por la reducción de vibraciones como por la simplificación del sistema motor respecto a los de combustión.

Por cierto, fue el R44 de Tier 1 el que batió el 7 de diciembre de 2018 el récord de distancia para helicópteros totalmente eléctricos: Vuelo de 55.5km a 800 pies de altitud con una velocidad promedio de 80 nudos (148km/h)

Nota de prensa

Tier 1 Engineering, en cooperación con su colaborador Lung Biotechnology PBC, ha anunciado que completó con éxito un vuelo de 39km entre el Aeropuerto Regional Jacqueline Cochran, cerca de Coachella, y el Aeropuerto Internacional de Palm Springs el 29 de octubre de 2022 a las 1100 PST, el primer vuelo en helicóptero entre aeródromos únicamente con energía eléctrica.

Glen Dromgoole, presidente de Tier 1 Engineering, dijo: “El progreso en el desarrollo de la propulsión totalmente eléctrica es similar a otros períodos de avance significativo en la aviación. Los primeros aviones volaban distancias cortas y muchas personas tenían miedo de viajar en las nuevas máquinas voladoras. Al comienzo de la era del jet, existía un escepticismo generalizado sobre la viabilidad comercial del nuevo motor de turbina. El vuelo histórico de hoy demuestra el potencial de los helicópteros totalmente eléctricos y estamos encantados con este logro”.

La ruta específica que se ha seguido durante el vuelo tuvo que ser aprobada por la FAA y se escogió específicamente para lograr esa aprobación.

El e-R44 utiliza una tecnología nueva de intercambio rápido de paquetes de baterías. El tiempo necesario para cambiar una batería es de 15 minutos frente a 1 hora para una recarga completa.

“Estos vuelos son los componentes básicos que sientan las bases sobre las que nuestro futuro puede seguir despegando. Estoy emocionado y honrado de ser parte de este increíble equipo, este evento histórico y promover el avance de hacer que los cielos azules sean verdes”, dijo el piloto Ric Webb, director ejecutivo del operador de helicópteros Part 135 OC Helicopters, que planea ofrecer servicios de entrega de órganos a través de el R44 eléctrico.

La Dra. Martine Rothblatt, una de las pilotos del helicóptero y directora ejecutiva de la empresa matriz United Therapeutics Corporation, dijo: “Lung Biotechnology se compromete a entregar órganos trasplantables que salvan vidas con una huella de carbono cero. Es completamente posible salvar la vida de los pacientes mientras se asegura un planeta habitable. El histórico vuelo en helicóptero eléctrico interurbano de hoy demuestra que muchas distancias de transporte de órganos son factibles con aviones eléctricos que utilizan la tecnología actual. Estamos comprometidos a lograr la certificación de la FAA para este helicóptero eléctrico y a utilizar celdas de energía más nuevas para extender nuestro alcance a cientos de millas en los próximos años”, concluyó el Dr. Rothblatt.

El e-R44, totalmente eléctrico, está diseñado para entregar órganos fabricados para trasplante por parte de United Therapeutics, la compañía de biotecnología responsable del primer trasplante del mundo de un corazón de cerdo modificado genéticamente a un paciente humano, y de crear el primer trasplante completo del mundo. tamaño de órganos bioimpresos en 3D. United Therapeutics planea utilizar aeronaves eléctricas, impulsando la aviación sostenible, para entregar órganos trasplantables en largas distancias a aeropuertos y luego utilizar los helicópteros eléctricos y eVTOL para los viajes más cortos, como desde los aeropuertos hasta los hospitales de trasplantes. En octubre de 2021, Unither Bioelectronics, una subsidiaria de United Therapeutics, logró la primera entrega del mundo de un pulmón para trasplante mediante un dron eléctrico entre dos hospitales en el centro de Toronto.

Acerca de Lung Biotechnology

Lung Biotechnology y su empresa matriz United Therapeutics demostraron previamente la entrega exitosa de un pulmón que salva vidas para trasplante mediante un dron eléctrico en octubre de 2021, produjeron el primer corazón porcino genéticamente modificado trasplantado a un humano a principios de 2022 y produjeron el primer corazón genéticamente- riñón porcino modificado para trasplante a donantes de órganos humanos con muerte cerebral a fines de 2021. Las compañías han ayudado a salvar la vida de más de 250 pacientes al extender la viabilidad de los pulmones trasplantados que inicialmente se consideraron inadecuados a través de sus instalaciones de perfusión pulmonar ex vivo en Silver Spring, Maryland y en el campus de Mayo Clinic en Jacksonville, Florida.

Un nuevo coche que vuela, eVTOL esta vez, hace su primer vuelo

Hemos presentado tantos coches que vuelan en el blog que hace tiempo que decidimos dejar de hablar de ellos, puesto que casi ninguno tiene futuro y rara vez pasan de la fase de creación de imágenes digitales para captar inversores.

Sin embargo, con el XPENG AEROHT X3 haremos una excepción, por las novedades que aporta y publica en vídeo.

Por un lado es el primero que vemos que auna ser eléctrico y capacidad de despegue y aterrizaje en vertical, gracias a la combinación de su carrocería de coche convencional con los cuatro brazos retráctiles, cual cuadricóptero plegable de bolsillo,con 8 rotores contrarrotatorios. El último «coche volador» octocóptero que pasó por estas páginas fue el AT Blacknight, pero su apariencia no era, ni mucho menos, tan refinada ni deportiva.

Por otro lado, es el primer vehículo eVTOL multirrotor que no sólo leemos que han hecho ensayos de que puede volar de forma segura con un fallo de rotor, sino que además han hecho público un vídeo de ello. Esta característica es indispensable si se pretenden usar estos vehículos sobre población, y es uno de los mayores fallos que destacamos de casi todos los vehículos de este tipo: unos nisiquiera confirman que el vehículo sea seguro en caso de fallo de rotor, otros lo afirman, pero no hay vídeo para comprobarlo.

Y por último, el sistema de conducción en modo aire. Si quieren que cualquier usuario de coche sea capaz de pilotar uno de estos vehículos, sus mandos han de ser muy intuitivos. Y hasta ahora, salvo del Maverick -que no deja de ser un paramotor-, de ninguno teníamos información acerca de cómo se controlaba en vuelo. Este se controla mediante el volante y una palanca multifuncional, que permite desplazar el vehículo adelante-atrás, izquierda-derecha y además tiene el acelerador, que permite subir y bajar. El alabeo se logra gracias al volante del coche, y los virajes gracias a una acción combinada del mismo con la palanca multifunción.

La masa total del vehículo son unos 2000kg. Será intersante comprobar cuánta autonomía tiene en vuelo, la de los eléctricos ya es escasa en tierra, cuánto menor no será por aire. Y más interesante aún será observar su doble certificación, como vehículo terrestre y como aeronave.

Nota de Prensa: El primer coche volador eVTOL del mundo muestra un diseño mejorado y realiza su vuelo inaugural

XPENG AEROHT, una filial de XPENG, presentó la última versión del primer automóvil eléctrico volador de despegue y aterrizaje vertical (eVTOL) del mundo en XPENG 1024 Tech Day. Diseñado tanto para volar como para conducir en carretera, el automóvil volador cuenta convenientemente con un elegante sistema de rotor plegable para una conversación fluida entre ambos modos. Está equipado con un nuevo sistema de control de vuelo tolerante al fallo y un sistema de respaldo de dos motores para garantizar la seguridad.

El diseño de la estructura ha sido optimizado, pasando del sistema de doble rotor lado a lado del año pasado a una nueva configuración de múltiples rotores. La complejidad general del diseño del sistema también se ha reducido, para mejorar aún más la seguridad y la fiabilidad del vuelo. El vehículo de ensayos del nuevo coche volador ha completado con éxito su primer vuelo, así como múltiples ensayos de fallo de un solo rotor.

En modo coche, es comparable con cualquier automóvil eléctrico convencional en términos de funcionalidad y tamaño. En modo vuelo, el coche volador se pilota utilizando el volante y la palanca de cambios como controles para avanzar y retroceder, girar, ascender, flotar y descender.

Puede despegar y aterrizar verticalmente, y volar sobre la congestión del tráfico, los obstáculos y los ríos para satisfacer una nueva serie de necesidades de movilidad de corta distancia.

En tierra está sujeto a las leyes de tráfico, y en vuelo a las regulaciones de cada país para el espacio aéreo de baja altitud.

Nota de prensa

ELEKTRA TRAINER obtiene el primer puesto en el Electrifly-In eTrophy

Elektra Solar ha ganado el eTrophy con el biplaza UL ELEKTRA TRAINER, viejo conocido del blog, en el Eletcrifly-In de Berna por el vuelo eléctrico puro más largo, de Pfullendorf a Berna.

El vuelo eléctrico está viviendo una historia paralela a la que ya vivieron los aviones con motor de explosión. Cada vez más rápido, lejos y alto, repitiendo azañas, como el cruce del Canal de la Mancha. El establecimiento de estos premios ayuda a su desarrollo y evolución.

La empresa Elektra Solar GmbH de Landsberg aL, Baviera, ganó el primer lugar en la competición Electrifly-In eTrophy en la categoría de aviones eléctricos este fin de semana (10/11 de septiembre de 2022) en Suiza con el nuevo avión ultraligero biplaza ELEKTRA TRAINER. Segundo y tercer puesto fueron para para los equipos de Pipistrel y X-eye.

El eTrophy consistía en volar la distancia más larga desde cualquier punto hasta el aeropuerto de Berna. El piloto de ensayos de Elektra Solar y gerente de ventas Uwe Nortmann despegó del aeródromo de Pfullendorf en Baden-Württemberg poco antes de las dos y media del sábado y cubrió la distancia de 174 km en 2:10 (80.31km/h de media de velocidad respecto a tierra). Durante este vuelo, el ELEKTRA TRAINER voló con un viento en contra de más de 25 km/h, rachas más fuertes y una zona de lluvia.

El domingo, el segundo día del simposio y de la competición. El clima había mejorado significativamente. Bajo el sol y con poco viento, todos los equipos, incluidos los de Elektra Solar, pudieron realizar varios vuelos de demostración para los visitantes.

Tras el vuelo de regreso a casa desde el aeropuerto de Berna a Pfullendorf, el análisis de los datos de vuelo mostró que el ELEKTRA TRAINER consumió 10kWh/100km. Esto es sólo la mitad del consumo de un coche eléctrico.

Fuente: Nota de Prensa

Hoy, en drones VTOL raros… Cyclone Rotor

El drone que vuela como un multicóptero, como un helicóptero normal y como un avión

Hoy tenemos un drone que puede despegar en vertical, mantenerse en vuelo estacionario y volar rápido en horizontal. Pero no es un helicóptero, ni un convertiplano, ni un tri-cóptero. Es… todo a la vez.

Imaginad un pequeño fuselaje entorno al cual se sitúan tres grandes palas. Y cada pala tiene un pequeño motor de multicóptero. Cuando está en tierra despega en vertical como si se tratara de un multicóptero. Pero tan pronto está en el aire los rotores se inclinan, haciendo que las tres palas giren sobre el fuselaje central, convirtiéndose en un ala rotatoria enorme. Y para volar en horizontal como un avión, dos de estas palas actúan como alas mientras que la tercera se mantiene en vertical, como un gran estabilizador, recordando a cierta nave de ficción al ser vista de frente.

De este modo el inventor nos promete la posibilidad de despegue en espacios confinados, el vuelo a punto fijo con la economía de un ala rotatoria, en lugar de con el alto consumo de un multicóptero habitual, y el eficiente vuelo de un avión de ala fija cuando se vuela en crucero.

La eficiencia de un rotor depende de su área. Por eso los pequeños multirrotores consumen tanta energía. En este artilugio se incrementa el área del disco rotor y se utilizan rotores de punta de pala lo que hace, como en el caso de los helicópteros con motores a reacción en punta de pala, que no necesite un sistema anti-par.

El artilugio ha sido bautizado como «Cyclone-rotor» por el inventor

Aprovechando las leyes de la naturaleza para un vuelo multi-rotor más eficiente. 300% más eficiente, para ser exactos. Este es un VTOL que tiene tres modos de vuelo: vuelo estacionario convencional, vuelo estacionario como ala rotatoria, más eficiente, y vuelo en avance, rápido.

Aumentar el área del disco del rotor agregando palas a los brazos y haciéndolo girar usando las hélices más pequeñas del dron reduce la pérdida de energía al arrastrar mientras se mantiene suficiente sustentación para el vuelo estacionario. Gracias, teoría del impulso.

Siempre quise construir un VTOL giratorio similar a otros inspirados en la hoja de arce. Esta plataforma me permitirá probar algunas estrategias de control nuevas y únicas para mantener el control desde un marco de referencia inercial fijo. También es único porque está diseñado específicamente para poder operar en cualquiera de los tres modos de vuelo. Vuelo hacia adelante para un crucero eficiente, giro para un vuelo estacionario y un ascenso eficientes, y vuelo estacionario regular para despegues y aterrizajes. Por lo tanto, no solo puede planear como un avión si hay un fallo en el motor, sino que también puede autorrotar si el fallo ocurre mientras está en vuelo estacionario.

Nicholas Rhem, el inventor

El inventor ha dejado los ficheros y otros detalles para que os lo podáis fabricar en HackAday.

Fuentes: publicación en LinkedIn del inventor.

Primer vuelo del Elektra Trainer, avión ultraligero eléctrico

Elektra Trainer en su primer vuelo

El equipo de Elektra lleva más de diez años de experiencia acumulada en aviones eléctricos. La primera vez que aparecieron en nuestras páginas fue en 2010, y hacía mucho que les teníamos perdida la pista. Nos ha alegrado volver a leer de ellos, aunque parece que han rebajado su nivel de expectativas y han eliminado el requerimiento de avión solar para este entrenador.

La aeronave es muy aerodinámica, con un ala de gran alargamiento, lo que reduce la resistencia inducida, y con un tren retractil biciclo, con pequeñas ruedas auxiliares en punta de plano, al estilo de los veleros. Esta configuración de tren le permite reducir la resistencia y ahorrar peso.

Además Elektra trabajaba en hangares con techos solares para recargar sus aeronaves mientras están en el hangar, y en sistemas de diagnóstico avanzado, para mejorar el mantenimiento predictivo de las aeronaves.

Elektra One, el prototipo monoplaza, durante su primer vuelo en 2011

El Elektra Trainer hereda claramente sus líneas de su predecesor monoplaza, el Elektra ONE.

El Elektra Trainer, como su antecesor Elektra ONE tiene un tren biciclo retractil con ruedas auxiliares de punta de plano, típico de los veleros

Según su nota de prensa:

El 29 de junio de 2022, un avión ultraligero -según la normativa alemana- eléctrico biplaza Elektra Trainer de Elektra Solar GmbH (una empresa derivada del Instituto DLR de Robótica y Mecatrónica) despegó para su vuelo inaugural en el Aeropuerto Internacional de Memmingen.

El avión despegó entre jets de negocios y aviones comerciales en menos de 100 m en silencio y sin emisiones. Después de unos 20 minutos de vuelo, el piloto de pruebas Uwe Normann aterrizó, confirmando las extraordinarias características de la aeronave, que incluso superó las expectativas de los desarrolladores, llegando a velocidades ascensionales de más de 1500fpm (8 m/s), volando en vuelo de crucero bajo con solo unos 10 kW (13.4CV) de potencia, sin vibraciones en la cabina y con una estabilidad perfecta. Al aterrizaje la batería tenía un remanente de un 80% de carga.

Elektra Trainer fue diseñado como un avión ideal para escuelas y clubes de vuelo. Los costes operativos son inferiores a 60 EUR/hora, que -según la nota de prensa- es aproximadamente la mitad del coste de un avión ultraligero clásico. Esta diferencia de precio aumentará de un año a otro debido al rápido aumento de los costos del combustible.

Con esta aeronave, Elektra Solar GmbH pone en funcionamiento una infraestructura en la nube para el diagnóstico automático del sistema y el mantenimiento preventivo (Digital Aircraft Platform). Los datos de estado del sistema del vuelo se cargan en una nube y se analizan automáticamente con la ayuda de algoritmos de IA. Los errores y desviaciones del estado normal se comunican al propietario y/o a una empresa de mantenimiento. Gracias a esta tecnología, se incrementará la seguridad de funcionamiento y se reducirá aún más el esfuerzo de mantenimiento.

Después de este vuelo inaugural, comenzarán las pruebas de vuelo de certificación, con el objetivo de completar la certificación UL alemana para fines de este año.

  • Autonomía: 2,5 horas
  • Alcance: 300 km
  • Cabina lado a lado de 1,25 m de ancho
  • La burbuja de plexiglás es cómoda para pilotos de 2 m de altura
  • Tiempo de montaje desde el remolque de transporte hasta que esté listo para volar: unos 30 minutos
  • Estación de carga portátil de 12 kW
  • Hélice de paso variable
  • Tren de aterrizaje retráctil eléctrico
  • Plataforma digital de aeronaves para diagnóstico automático de sistemas y mantenimiento preventivo
  • Tasa de planeo superior a 25:1
Velocidades
Crucero 120 km/h
Pérdida con Flaps 82 km/h
Pérdida sin flaps 91 km/h
Máxima velocidad operacional 180 km/h
VNE 205 km/h
Velocidad ascensional 3 m/s (590fpm)
Distancias de despegue y aterrizaje
Despegue 200 m
Aterrizaje 200 m
Alcance y Autonomía
Autonomía máxima 2.5 hours
Alcance máximo 300 km
Motorización
motor eléctrico HPD-50D
Potencia máxima 50 kW | 67CV
Potencia máxima continua 40 kW | 54CV
Potencia de velocidad de crucero 12 kW | 16CV
Máxima capacidad de la batería 35 kWh
Pesos
MTOW 600 kg | 1322,77 lb
Peso en vacío pero con la máxima cantidad de baterías 400 kg | 881,85 lb
Dimensiones
Envergadura 14.5 m
Alargamiento 19
Diámetro de la hélice de paso variable 1.75 m
Ancho de la cabina 1,20 m
Otros
Mejor planeo 28:1
Nivel de ruido <50 dB
Certificación LTF-UL-2020 (normativa ULM alemana)

Elektra Solar