Sikorsky presenta el prototipo RAIDER X para el programa FARA del Ejército de Estados Unidos

El prototipo RAIDER X fue presentado en la conferencia anual AUSA 2023.

La conferencia anual de la Asociación del Ejército de Estados Unidos (AUSA) 2023 se convirtió en el lugar donde Sikorsky finalmente reveló fotos de su proyecto para el Future Attack Reconnaissance Aircraft (FARA) del Ejército de Estados Unidos.

El programa FARA tiene como objetivo adquirir la próxima generación de helicópteros de reconocimiento, que ocuparán el lugar del retirado OH-58D Kiowa Warrior. El RAIDER X de Sikorsky compite contra el Bell 360 Invictus, tras el abandono del FARA por parte de Boeing, AVX/L3 Harris y Karem.

El RAIDER X es heredero de los resultados obtenidos con los programas S-97 y X2.

Durante el desarrollo, se hizo hincapié en el enfoque de Sistemas Abiertos Modulares (MOSA, por sus siglas en inglés) del Ejército de Estados Unidos para permitir futuras actualizaciones en la arquitectura del sistema.

Sikorsky dice que prototipo del RAIDER X está completo en un 98%, ya que la aeronave espera la finalización del Programa de Turbina de Motor Mejorado GE T901 (ITEP, por sus siglas en inglés). Con el nuevo motor programado para finalizarse a finales de este mes, el primer vuelo está programado para antes del cuarto trimestre de 2024.

De blanco aéreo a drone de foto-reconocimiento, en los años 50

Esta historia es más o menos paralela a la del Argus As 292, el UAV alemán de 1939 que se ideó como blanco, se desarrolló como avión de reconocimiento, y murió por haber nacido antes de tiempo. Solo que esos años de diferencia en lso desarollos son suficientes como para que el avión americano estuviera en producción más de 40 años y fuera todo un éxito.

El blanco aéreo

A fines de la década de 1930, Radioplane Company había desarrollado una serie de modelos de aviones radiocontrolados como blancos aéreos para el entrenamiento de artillería antiaérea del Army Air Corps.

En 1952, Radioplane Co. fue adquirida por Northrop, y se convirtió en la división de Radioplane, posteriormente Ventura, de Northrop Corporation.

En 1945, Radioplane creó el Modelo RP-19 al reemplazar el motor O-45 en el blanco OQ-17 por un motor O-90 de mayor potencia.

El RP-19 fue probado por la USAAF como YOQ-19 en julio de 1945 y se ordenó su producción en 1946 como OQ-19A.

El OQ-19A tenía un fuselaje de metal y alas de madera, que serían reemplazadas posteriormente por otras también metálicas. Como todos los siguientes miembros de la familia, podría lanzarse desde un lanzador de catapulta, un lanzador giratorio o con cohetes combustible sólido de 9,6 kN de empuje. Los drones de la Fuerza Aérea también podrían lanzarse desde el aire, generalmente desde aviones DB-26C (Los A/B-26 Invader modificados para tal fin).

Originalmente A-26C Invader, B-26C tras el cambio del sistema de designaciones, y modificado como porta-drones, DB-26C

Los OQ-19 estaban controlados desde una estación terrestre de radio. La recuperación se realizaba con un paracaídas, como los que se montan hoy en día por seguridad en las aeronaves ligeras. Se podía desplegar con una orden desde la estación de radio, o bien de forma automática si se daban los parámetros necesarios que lanzaban tal orden.

En 1950, el XOQ-19B se probó con alas de metal, un motor O-100 más potente y un giroscopio vertical para operaciones fuera de la vista. Este modelo fue producido como el OQ-19B y podía ser seguido por el operador en rangos más allá de la vista usando un sistema de seguimiento por radar de banda X.

El OQ-19D, volado por primera vez en abril de 1950, era similar al OQ-19B, pero carecía de la capacidad de operación fuera de la vista y se rastreaba ópticamente utilizando luces o bengalas de humo montadas en drones.

A partir de 1960, el Ejército de los EE. UU. probó en vuelo el OQ-19E, que era esencialmente un nuevo avión con un nuevo fuselaje de sección circular, alas reforzadas y un motor con compresor McCulloch O-150-4. Aunque el OQ-19E mostró un buen rendimiento, no recibió ningún pedido y en 1961 se dio por terminado el programa.

La Marina de los EE. UU. también utilizó la familia de drones OQ-19, designándolos KD2R Quail.

La versión de producción inicial de la USN fue el KD2R-1, idéntico al OQ-19A. El KD2R-2 era similar al -1, excepto por una radio de 28V y un sistema de estabilización (el NAMTC -Centro de pruebas de misiles aéreos navales- probó sistemas de estabilización en el KD2R-2E).

El KD2R-3 era idéntico al OQ-19D y el XKD2R-4 era un desarrollo del -3 excepto por el motor y el sistema de estabilización. Es posible que el XKD2R-4 fuera similar al OQ-19E.

El KD2R-5 Shelduck era un modelo mejorado, que luego fue redesignado como MQM-36A.

Entre 1950 y 1960, se construyeron grandes cantidades, unas 20000 unidades, de OQ-19/KD2R. Para 1963, solo las versiones OQ-19B/D todavía estaban en uso en el Ejército, y la Marina había descartado todos los modelos excepto el KD2R-5.

En junio de ese año, con la reorganización y los cambios de dedisgnación, las variantes que aún estaban en servicio fueron redesignadas de la siguiente manera:

  • OQ-19B >> MQM-33A
  • OQ-19D >> MQM-33B
  • KD2R-5 >> MQM-36A

En 1973, Northrop introdujo un nuevo sistema de mando y control para los blancos MQM-33. Cuando estaban equipados con este sistema, el MQM-33A y el MQM-33B se convirtieron en el MQM-33C y el MQM-33D, respectivamente.

En la década de 1980, la familia de drones OQ-19 se conocía generalmente como BTT (Basic Training Target), y se construyeron más de 73000 drones de todas las versiones BTT (OQ-19, KD2R, MQM-33, MQM-36).

La producción del MQM-33C para la Guardia Nacional del Ejército de EE. UU. continuó hasta finales de la década de 1980. Ya no está en servicio.

El MQM-33 fue uno de esos blancos aéreos concebidos para ser baratos y poder ser derribados por la artillería antiaérea en prácticas de tiro. En producción en varias versiones durante más de 40 años, es uno de los objetivos más exitosos jamás construidos.

El dronde de foto-reconocimiento

Otro derivado del MQM-33 fue el dron de vigilancia MQM-57 Falconer.

En 1955, Radioplane desarrolló el RP-7l Falconer como un derivado de la serie de drones-blanco-aéreo OQ-19/MQM-33.

El Falconer era similar en apariencia al Shelduck, pero tenía un fuselaje un poco más largo y definitivamente más robusto. Tenía un sistema de piloto automático, además del sistema de radiocontrol, y podía llevar cámaras, así como bengalas de iluminación para reconocimiento nocturno. El equipo se cargaba a través de un carenado en la parte trasera, entre las alas.

Aunque solo tenía una autonomía de poco más de media hora, por lo que su uso era limitado, aparentemente el Falconer entró en servicio a nivel internacional con varios ejércitos diferentes.

El dron era lanzado desde un raíl en una plataforma transportable, por un cohete de combustible sólido, y era recuperado en paracaídas. El RP-71 tenía cámaras de fotos a bordo como equipamiento normal, y cámaras de TV como opcional y fue utilizado por el ejército de los EE. UU. como avión de reconocimiento.

El UAV en sí era conocido como AN/USD-1, aunque esta era realmente la designación de todo el sistema de vigilancia de drones, incluido el equipo de tierra (UAS). En otras ocasiones se abreviaba su nombre como SD-1.

La misión de la sección de drones era realizar fotografía aérea, reconocimiento y vigilancia, y adquisición de datos del objetivo, junto con una estación de mando que estaba equipada con radar móvil como unidad de seguimiento.

Del manual:

  1. Capacidades.
    • Proporciona a las divisiones blindadas, de infantería e infantería mecanizada, y a los regimientos de caballería blindada capacidad de reconocimiento fotográfico diurno y nocturno, adquisición de objetivos y vigilancia
    • Realiza misiones cuando y donde el empleo de aeronaves tripuladas no es factible o deseable, y cuando los aviones tripulados no están disponibles (por ejemplo, cuando la meteo es adversa, donde la radiación es grande, o donde el aire hostil y las capacidades de defensa son limitadas).
    • Realiza vigilancia aérea fotográfica y reconocimiento donde no hay posibilidad de realizar una pista de aterrizaje, o sin necesidad de preparar una zona de despegue y aterrizaje.
    • Capacidad de lanzar un dron tan solo 20 minutos desde la llegada a la zona de lanzamiento.
    • Provee mayor seguridad para la división e información precisa del enemigo y del terreno.
  2. Limitaciones
    • El dron tiene una autonomía de 30 minutos, lo que le da un radio de operación aproximado de 65 kilómetros.
    • Solo se pueden tomar fotografías verticales satisfactorias a altitudes de 400 pies (120m) sobre el suelo o más.
    • Las condiciones meteorológicas imponen las siguientes limitaciones a las operaciones con drones:
    • (a) Un techo mínimo de 700 pies y visibilidad de una milla es la condición óptima para el lanzamiento. Sin embargo, para misiones de emergencia, el radar puede fijar el transponder cuando el dron está en el lanzador y hacer el lanzamiento bajo condiciones cero-cero.
    • (b) Para obtener fotografías adecuadas, la visibilidad vertical debe estar despejada hasta la altitud de vuelo del drone
    • (c) Para emplear el radar de seguimiento AN/MPQ-29, el dron debe mantener una separación mínima de las nubes con alto contenido de humedad o se perderá el contacto de radar.
    • (d) El lanzamiento y vuelo de drones es crítico cuando las velocidades del viento superan los 25 nudos o la diferencia entre el viento constante y la ráfaga supera los 15 nudos.
    • El número de vuelos de drones por día (24 horas continuas de operación) variará normalmente de cuatro a seis, dependiendo del entrenamiento de la unidad y del mantenimiento del drone.
    • Se requieren aproximadamente 50 minutos para completar una misión, desde el momento del lanzamiento hasta la entrega de un negativo húmedo a un intérprete fotográfico, siempre que haya una unidad de procesamiento fotográfico disponible cerca del sitio de recuperación.
    • (6) El dron es vulnerable a la mayoría de las armas antiaéreas.
    • (7) Los sistemas de guía y seguimiento de drones no son seguros contra las contramedidas electrónicas (ECM).

El drone era controlado por radio de forma remota y se podía seguir bien visualmente, bien por radar.

Además del sistema de control remoto, contaba con un piloto automático, basado en un giróscopo que estabilizaba y actuaba sobre los mandos aerodinámicos para lograr un vuelo estable.

Iba equipado con varias cámaras. La KA-20A iba montada en la zona delantera, justo detrás del mamparo del motor, y cargaba 95 instantáneas por carrete, para fotos cuadradas de 9×9 pulgadas, para foto nocturna, o carretes de 10 fotos para foto nocturna. La limitación de la foto nocturna la imponía el número de cartuchos de flash que podía cargar el drone. Podía operar entre 400ft sobre el suelo y 4000ft de altitud, aunque por la noche se reducía a sólo 1000 o 2000ft.

El alcance teórico del radar indicaba que podía mantener el seguimiento del drone hasta a 95km, asumiendo que el drone volaba mínimo a 400ft sobre el suelo y que no se interponía ningún obstaculo entre ambos. Sin embargo, dado el corto radio de acción del drone, no se habían hecho ensayos y por tanto no había datos a más de 18km.

El equipo de tierra estaba formado por el camión/estación de mando y por un remolque que transportaba un generador de electricidad, además del suministro de combustible. Además se podía instalar una tienda de campaña que hacía las funciones de hangar y taller de reparaciones.

Instalación de la rampa de lanzamiento, distancia a los obstáculos para sobrepasarlos
Instalación de la rampa, zona de seguridad

Normalmente, la estación de control en el sitio de lanzamiento se utilizaba para vuelos en línea de visión. El radar AN/MPQ-29 de seguimiento se situaba mínimo a 30m de ésta y a 300m del lanzador, por eso se aconsejaba utilizar distintos grupos electrógenos para cada parte del sistema.

Si se podía conseguir línea de visión directa, se podían hacer lanzamientos exitosos con la estación de control a 3km del lanzador, pero se desaconsejaba su uso, por el retraso en la llegada de los comandos. Por eso en el manual se relegaba su uso a emergencias. Además, en caso de haber más de 300m entre estación de radio y lanzador, se instaba al uso de un teléfono de campaña para comunicación entre ambos. Además se recomendaba que la instalación del «almacén» de todo lo que no estuviera en uso estuviera al menos a 150m de la zona de lanzamiento.

Como toda aeronave, el manual de uso incluía toda una serie de procedimientos previos al lanzamiento. Básicamente revisión e inspección pre-vuelo, instalación de las cámaras de fotos o televisión, instalación del paracaídas, instalación de los cohetes y por último repostaje.

Y, como en toda aeronave, la planificación del vuelo era indispensable. Para ello había que estudiar las cartas de la zona, el objetivo a cubrir, establecer rumbos, altitudes y velocidades, y trazar el rumbo sobre la pantalla del radar de seguimiento, lo que ayudaría al controlador a seguir la ruta predefinida y cumplir la misión asignada.

Operación en línea de visión
Tablero de seguimiento para misiones más allá de la línea de visión

La recuperación, tras el vuelo de vuelta, se realizaba mediante un paracaídas de recuperación balístico (BRS).

La producción en serie del SD-1 para el ejército de los EE. UU. comenzó en 1959. En junio de 1963, los drones RP-71 de los sistemas de vigilancia AN/USD-1A y AN/USD-1B fueron designados como MQM-57A y MQM-57B. respectivamente. El MQM-57 permaneció en servicio hasta mediados de la década de 1970, y Northrop Ventura (anteriormente Radioplane) construyó un total de aproximadamente 1500 MQM-57 de todas las versiones.

Fuentes

Y una vez más, gracias a @MassiasThanos por darnos a conocer este vídeo y este drone.

Chinook armado con dos obuses de 105mm

El valor de la artillería aerotransportada es indudable, bien sea en forma de avión de ataque a tierra y apoyo cercano (los viejos P-47 e IL-2 batiendo tierra o el más moderno A-10), bien en forma de artillería terrestre fácil de transportar de un punto a otro para dotar de capacidad de fuego distintas zonas.

Lo peculiar es desear un concepto híbrido, como este Chinook con dos obuses XM204 de 105mm.

Se definieron varios tipos de misiones, a saber:

  • Tierra-Tierra con el cañón en el helicóptero
  • Tierra-Tierra desmontando el cañón con el helicóptero en tierra
  • Tierra-Tierra desmontando el cañón con el helicóptero en vuelo a punto fijo
  • Aire-Tierra, disparando los cañones desde el aire.

La 2ª y la 3ª misiones son relativamente comunes. No deja de ser transportar un cañón con sus 9 servidores y 96 obuses. En el primer caso el helicóptero aterriza, las palas se frenan y los cañones se descargan, y en el segundo igual solo que el helicóptero aún permanece en vuelo. La mayor singularidad es que los cañones no se transportan en el interior del fuselaje o en eslinga, sino que van transportados en plataformas externas unidas a los costados del fuselaje.

Sin embargo la primera misión y la última son totalmente sorprendentes. En la primera se trata de disparar los cañones desde tierra, pero sin desmontarlos de sus plataformas de transporte. En la segunda se trata de, directamente, usarlos en vuelo, como si fuera el obús de 75mm que montó el B-25 para ataque naval en el morro, o los cañones sin retroceso que montó el AC-130. O el Sondergerät SG104 que pensaban montar los alemanes.

Como en éste último caso, los análisis y precauciones a tomar tienen que ver con los efectos de los gases de la boca del cañón, y los de retroceso, en los delgados paneles del revestimiento y los larguerillos y cuadernas que los sustentan. A parte quedan, por supuesto, los estudios de los refuerzos necesarios para transportar tales masas de forma externa en un lugar originalmente no previsto para ello.

El poder operarlo directamente desde el aire permite no solo la misión de ataque a tierra en sí misma, sino la de atacar objetivos de oportunidad durante los vuelos de traslado de los cañones. Eso sí, para la misión aire aire había que diseñar un cargador que permitiera la alimentación automática y en vuelo, sin intervención externa de ningún servidor. Según la especificación, se diseñarían cargadores con capacidades de 5 tiros capaces de alimentar el cañón para obtener una cadencia de 30 disparos por minuto. El cargador para disparo aire-tierra debería ser capaz de aceptar todo tipo de municiones (anti personal, anti materia, marcadoras, cortinas de humo, iluminadoras y químicas, y munición especial, como anti-radiación, si está disponible), y además debía permitir seleccionar el tipo de munición a disparar antes de hacerlo.

Los refuerzos necesarios para transportar y disparar los cañones añadían 116kg extra al peso en vacío de la aeronave. Con los cañones instalados, el helicóptero sólo podría despegar verticalmente a nivel del mar y condiciones estándar o mejores. En cualquier otra condición hubiera sido imperativo hacer un despegue rodado.

Se daba por hecho que la velocidad y el alcance del helicóptero se iban a ver afectados por el peso y resistencia aerodinámicas extra. Se pedía que al menos pudiera tener un crucero de 120kt y un alcance de 100 millas náuticas.

En cuanto a los sistemas de puntería, si se disparaba desde tierra se utilizaría las miras propias del cañón. Pero para dispararlo desde el aire había que diseñar una mira de puntería para el helicóptero que funcionaría junto con un telémetro láser.

Para el caso de utilizar desde tierra, había que ser capaces de descargar la munición que pudiera utilizar el cañón e forma rápida. Por eso se pedían al menos dos tambores con 18 disparos cada uno, y otros 60 disparos que se podrían descargar individualmente por el portón trasero.

Y además, Boeing por su experiencia estableció algunos requisitos adicionales, como que las modificaciones no comprometieran el uso normal del helicóptero cuando no estuviera equipado con los cañones, que dichas modificaciones fueran en forma de kit desmontable y que pudiera instalarse o desinstalarse en un máximo de 1h, con la menor cantidad de modificaciones estructurales posibles. Además asumían que los helicópteros empleados con estas modificaciones verían reducida su vida a fatiga, por lo que los elementos críticos deberían reemplazarse antes de lo habitual.

Durante el estudio de configuraciones, se realizaron algunos cambios. Tan solo el arma izquierda se desmontaría para las operaciones desde tierra. Ambas servirían para las operaciones aire-aire, y la de la derecha tanto para aire aire como para las operaciones desde tierra en las que se dispara sin desmontar del helicóptero. La plataforma de transporte sería retráctil, e incluiría un sistema de elevación por cables para poder descargar el obús desde el helicóptero volando a punto fijo hasta el suelo.

 Tras cuantificar la masa de los refuerzos interiores, exteriores, sobre espesores para resistir los gases del disparo… se estableció que se añadirían 256 libras (116kg) a la estructura del helicóptero, sólo en elementos estructurales, falta añadir la masa de los cañones y sistemas de tiro. La masa de los cañones, sus vigas de soporte, plataformas, sistemas de alimentación de las armas, la propia munición, el sistema de puntería y telemetría… suponía otras 10690libras (4853kg) adicionales. El total de las modificaciones suponían unos 5000kg.

Durante el dimensionado de las estructuras necesarias para soportar los cañones y la posibilidad de dispararlos en vuelo, se concluyó que la carga dimensionante era la que se producía en caso de fallo del cañón, induciendo 36500×1.5=54750 libras fuerza (24857kg fuerza)en la estructura. Por eso las vigas retráctiles del soporte del cañones izquierdo no eran de aluminio, sino perfiles en I normalizados, norma estadounidense, ¡de acero! De hasta 9×20 pulgadas (229x508mm). Estas vigas debían transmitir toda la fuerza a la célula reforzada del helicóptero. El soporte del cañón derecho, al ser fijo, estab formado por un cajón de torsión de aluminio que transmitía igualmente las cargas al fuselaje. Se encontró que, precisamente estas cargas en caso de fallo eran las que dimensionaban la estructura.

En cuanto a las cargas de izado, se dimensionó la estructura y los elementos de izado para 3Gs en caso de carga normal y 1.5×3=4.5Gs a carga última.

La masa extra de los obuses actuaba como amortiguador, así pues las vibraciones en los ejes longitudinal y lateral se reducían. En el eje vertical variaban ligeramente respecto a las vibraciones de un helicóptero normal, aumentando un poco. Este aumento en el eje vertical requería un amortiguamiento adecuado en diseño, y un re-cálculo de la vida a fatiga.

Además se recurrió para el estudio estructural a un relativamente novedoso sistema: un análisis por elementos finitos. Para los más estructura-trastorandos, el modelo FEM contaba con 2142 elementos para todo el fuselaje, que sirvió para obtener tanto los modos propios del fuselaje como estudiar la respuesta en frecuencias del mismo. Este modelo FEM confirmó que se producían vibraciones según el eje vertical, y que coincidían con el modo propio a flexión de los soportes de los obuses, y que se correspondían a dos grandes masas soportadas por vigas en voladizo. Además aparecía otro modo, correspondiente a la torsión de los soportes. Estas vibraciones según el eje vertical aconsejaban, como hemos visto antes, revisar la vida a fatiga, la posibilidad de amortiguar esos movimientos y ensayar a vibración los componentes críticos que pudieran verse afectados por estas nuevas vibraciones no cubiertas por el espectro inicial del helicóptero sin modificar.

Además se definieron y calcularon refuerzos para el revestimiento del fuselaje, para evitar efectos parecidos a los que vimos en el Sondergerät SG104. Esto suponía añadir refuerzos al revestimiento de 0.065 pulgadas (1.7mm) para el aluminio y de 0.4 pulgadas (10mm) para el plexiglás. Al realizar el estudio sobre los rotores, se encontró que los disparos no tenían un efecto significativo sobre ellos, ni siquiera en el modo aire-tierra. En cuanto a la respuesta dinámica, tan solo había efectos de guiñada en caso de disparo asimétrico durante el vuelo a menos de 60 nudos, pero proponían soluciones automáticas de compensación durante el disparo.

Como es de esperar, había que estudiar los efectos de los disparos sobre los motores. Se realizaron no solo análisis, sino ensayos, para comprobar que el aire aguas abajo del rotor arrastraba hacia abajo los humos y otros productos del disparo, evitando la ingesta de objetos extraños por parte de los motores, que en cambio sí recibían en su toma de aire una sobre presión de 0.5psi (0.34 atmósferas). Consultados los fabricantes de los motores, se concluyó que tampoco esto era problema para los motores.

Para el caso de descargar el cañón izquierdo con el helicóptero en vuelo estacionario, se estudió el efecto en la estabilidad de los cambios de posición del centro de gravedad, y la descarga repentina de tal cantidad de masa, en ausencia de viento, hacía que se tuviera que utilizar un 26% del mando disponible para alabeo. Esta situación podía ser más crítica en caso de viento lateral, aunque dentro de los límites del helicóptero.

Al estudiar el efecto en la controloabilidad del helicóptero a bajas velocidades y baja cota, no solo se encontró que el Chinook tendría que hacer siempre los despegues rodados, sino que además sería incapaz de volar a punto fijo fuera del efecto suelo. Esto es, para disparar tendría que hacerlo en vuelo de avance o bajar lo suficiente para entrar en efecto suelo.

En cuanto al sistema para apuntar, se estableció que el piloto tendría a su disposición un colimador óptico, proyectado, un sistema de mira conocido y utilizado ya en la IIGM. Además del colimador y del telémetro láser, se dotaría a la tripulación de unos binoculares de artillero. Así se establecía que a 4000m el piloto sería capaz de colimar el objetivo, aunque no podría identificarlo visualmente, labor para la que era necesario que el copiloto hiciera uso de los binoculares. Obviamente, cada vez que se instalara el kit con los obuses en el Chinook, había que llevar a cabo labores de calibración y alineamiento del cañón-mira-telémetro.

Para el modo de disparo desde tierra, había que detener las palas del rotor, aunque los motores siguieran en marcha, lo que hacía necesario incluir en el kit la instalación de unfreno de rotores.

Las conclusiones del informe es que las modificaciones eran técnicamente viables, aunque requerían refuerzos, un aumento del pso en vacío de 2200 libras y una disminución del alcance del 20%. Además era imposible disparar desde el suelo con los rotores en marcha, lo que hacía perder la ventaja de la movilidad de la artillería aerotransportada. En cuanto a disparo sin desmontar el cañón, sólo podía hacerse en estacionario dentro del efecto suelo, esto hacía perder la ventaja de poder disparar y salir volando de forma inmediata para evitar el fuego de contrabatería. La otra opción era disparar volando a más de 60 nudos, lo que sin duda dificultaría la corrección de la puntería, por mucho que se pudiera actuar sobre los ángulos de elevación  azimut de los cañones desde dentro de cabina.

Así pues, de los distintos modos que se estudiaban, el que se encuentra más atractivo y con menos limitaciones es el aire-tierra, y por eso en recomendaciones aparece aconsejado un estudio detallado de este modo, teniendo en cuenta la experiencia obtenida con los obuses M-102 instalados ya en los AC-130 de la USAF. También se recomiendan ensayos para evitar sorpresas desagradables y caras por los efectos sobre el helicóptero de los disparos de armas de gran calibre, así como el desarrollo de difusores que suavicen los efectos de los gases al salir por la boca del arma.

Fuente: Aerial Artillery Design Study. Two Externally Mounted XM204 Howitzers on a CH-47C Helicopter [pdf]

Y ya sabéis, si os ha gustado la entrada, ¡seguidnos!