Rotor completa la campaña de ensayos de vuelo su helicóptero no tripulado y autónomo

Desde que habláramos por primera vez de un helióptero autónomo allá por 2009 hasta hace casi exáctamente un año hablábamos de los vuelos autónomos de Sikorsky con su Black Hawk, hemos hablado en numerosas ocasiones de esta tecnología, incluso capaz de aterrizar en plataformas móviles, que promete revolucionar las tareas de las 3D: dull, dangerous and dirty. Esto es, misiones largas y aburridas (vigilancia, peinar zonas en misiones de búsqueda), peligrosas (un espacio aéreo especialmente disputado y sobre el que no se tiene superioridad aérea o hay exceso de misiles anti aéreos sin neutralizar o antiincendios) y sucias (guerra NBQ – Nuclear Bacteriológica Química).

Trece años después la tecnología sigue avanzando, y sigue siendo una promesa de futuro. Aunque parece que cada vez más realista. Hoy toca Robinson 22 de Rotor, que busca desarrollar una aeronave VTOL (de despegue y aterrizaje vertical) con una carga de pago de 550kg para labores anti-incendios, agrícolas, entrega de material en zonas peligrosas, ayuda humanitaria o aerotaxi como solución de movilidad aérea avanzada. Además, pretende que en 2024 esté certificada y pueda entrar en servicio realizando labores comerciales SIN personas a bordo (es decir, todas las que hemos descrito, menos las de aerotaxi). La certificación para vuelos con pasajeros se espera para más tarde.

Como comentarios personales, la utilidad como antiincendios parece limitada, por la carga útil, mientras que en el mercado de la movilidad aérea avanzada (o movilidad aérea urbana )podría tener sentido, e incluso ser relativamente económica, en comparación con los desarrollos de otros competidores, al partir de una aeronave ya certificada, y que «sólo» necesita un suplemento de certificado de tipo para su sistema autónomo no tripulado. Por cierto, también nos deja una pista del coste que tendrían estas aeronaves llamadas a solventar los problemas de congestión de tráfico en las ciudades… al menos a los bolsillos con mayor poder adquisitivo. Eso sí, con una tecnología probada, viable, y con una autonomía hasta ahora inalcanzable por las soluciones eléctricas.

Nota de prensa de Rotor

Rotor Technologies, Inc., desarrollador de aeronaves autónomas de despegue y aterrizaje vertical (VTOL), ha completado la primera campaña de pruebas de vuelo sin tripulación de un helicóptero civil a escala real.

La campaña se realizó con dos helicópteros autónomos Rotor R220Y. El R220Y es una plataforma experimental basada en el popular helicóptero Robinson R22 de dos plazas, con todas las funciones del helicóptero automatizadas por la tecnología de Rotor.

Dos R220Y han registrado más de 20 horas de vuelo y más de 80 horas de funcionamiento del motor durante la campaña de ensayos. Estos vuelos demostraron con éxito los sistemas de control de vuelo de Rotor, los modos autónomos de vuelo a punto fijo y velocidad, y los sistemas ver-y-evitar basados en visión artificial. La campaña también desarrolló la capacidad de vuelo a larga distancia de la aeronave a través de pruebas en vuelo de equipos de radio de largo alcance y enlaces de comunicación móvil LTE, aunque todos los vuelos se realizaron dentro de un radio limitado y en línea de visión directa de una estación de control terrestre.

Este es un hito importante hacia el vuelo completamente autónomo y una prueba de nuestra capacidad para desarrollar una autonomía que sea segura y confiable para operaciones de utilidad y pasajeros. Nuestro sistema de piloto de IA ya es de nivel experto en tareas como el control de vuelo de precisión y la navegación en condiciones de baja visibilidad, y estamos aumentando sus capacidades cada día.

Dr. Héctor Xu, fundador y CEO de Rotor

Cuando el sistema autónomo se desactiva, el helicóptero no requiere de un piloto a bordo, y puede ser controlado remotamente.

Estamos emocionados de ver los helicópteros Robinson utilizados por Rotor como plataforma para la innovación. Creemos que nuestra experiencia en vuelo y capacidad de fabricación posicionará a Robinson como un jugador clave en la próxima generación de aviación VTOL.

David Smith, Vicepresidente de Operaciones de Robinson

El siguiente paso

Rotor está comercializando su tecnología de autonomía con el desarrollo del R550X, un helicóptero utilitario no tripulado basado en el Robinson R44 Raven II. El R550X contará con una capacidad de carga útil de 1.212 libras (550 kg) y más de tres horas de autonomía. El R550X está diseñado para realizar operaciones peligrosas como lucha contra incendios, fumigación de cultivos, construcción, ayuda humanitaria y entrega remota de carga sin poner en riesgo la vida de los pilotos.

Estamos llevando al mercado comercial el VTOL no tripulado de mayor capacidad de carga disponible en el mundo. Estamos tomando toda la tecnología que hemos desarrollado en el R220Y y la estamos colocando en una plataforma similar, e incluso más capaz. Estamos trabajando con un grupo de socios cercanos para poner el R550X en operación con fines de lucro en 2024. Ninguna otra compañía se acerca a realizar operaciones comerciales con un helicóptero autónomo de este tamaño.

Ben Frank, Director Comercial de Rotor

Además del R550X, Rotor está avanzando hacia la certificación de la tecnología para vuelos de pasajeros. Los helicópteros autónomos de pasajeros tienen el potencial de popularizar el transporte regional rápido y conveniente, que actualmente solo está disponible para VIP. Con la mayor seguridad y eficiencia que ofrece la autonomía, el trayecto de 200 millas entre Nueva York y Boston podría completarse en aproximadamente 90 minutos sin necesidad de transitar por zonas congestionadas.

Lo último en coches que vuelan y movilidad aérea urbana, de XPENG AEROHT

En noviembre de 2022 presentábamos este coche volador chino de XPENG AEROHT. Básicamente parecia un coche común con un drone gigante acoplado en el techo. Posiblemente lo más destacado es que mostraban cómo era controlable aun en caso de fallo de uno de los rotores de uno de los brazos.

Durante el Xpeng Tech Day 2023 han presentado tres conceptos distintos.

El portaaviones terrestre

Es un cruce de SUV con el camión de Tesla y un 6×6, con 4-5 plazas, con capacidad de llevar un cuadricóptero biplaza. Según la descripción de la nota de prensa, el módulo aéreo biplaza permite el vuelo a baja cota, mientras que el módulo terrestre permite el transporte del anterior, además de los desplazamientos por tierra.

El módulo aéreo es una cápsula con cuatro brazos retráctiles y 4 rotores, en lugar de los ocho del coche volador anterior. Sin embargo aseguran que cumple los requisitos de ser controlable en caso de fallo de uno de los rotores.

También es, segun la nota de prensa,un producto en fase de diseño. Vamos, que la presentación, de momento, es tan solo de un concepto modelado en 3D.

Más allá del uso privado, tendría aplicaciones en servicios públicos, como polocía, bomberos o ejército.

Coche volador eléctrico, con capacidad de despegue y aterrizaje vertical

También presentó un nuevo coche volador, evolución del anterior. Con apariencia de coche deportivo y los brazos retráctiles de un octocóptero con rotores coaxiales contrarrotatorios. Interesante que todo el sistema de rotores quede retraído dentro del vehículo, evitando daños a terceros por las cuchillas de las hélices, o que éstas queden dañadas e inutilizadas por un evento fortuito pero común, como una china que salta, o un mal aparcamiento. Como su predecesor, en caso de fallo de un rotor podría seguir volando, gracias a un algoritmo de seguridad que permite que el coche-volador sea controlable a pesar de haber perdido uno de sus rotores. Dice la nota de prensa que, debido al desarrollo actual de las distintas normativas, el coche volador podría comercializarse y alcanzar la calle antes que los aerotaxis eVTOL, aunque suponga certificarlo en dos categorías de vehículo distintas -coche y helicóptero-, y con requisitos a menudo contradictorios. Por eso habrá que ver cómo evoluciona pues, normalmente, este tipo de vehículos entra en el rango de caprichos muy caros, siendo un coche con prestaciones mediocres, una aeronave con el mismo tipo de prestaciones, y con precios que permitirían comprar más de un coche y más de una aeronave mucho más capaces.

Y si todo falla, paracaídas de recuperación balística.

Una de las pegas que siempre hemos encontrado a este tipo de aeronaves de «movilidad aérea avanzada», o «movilidad aérea urbana», es la de la seguridad ante el fallo. Pocas han demostrado no sólo que tengan potencia como para poder seguir volando en caso de fallo de un motor, sino que sean controlables en caso de que se produzca ese fallo. Y eso fue lo que nos sorprendió la última vez que hablamos del coche volador de XPENG AEROHT, que su sistema de control tuviera un algoritmo de seguridad ante el fallo que permitiera una toma segura en caso de que se produjera este evento. Ahora, además, han presentado un sistema adicional de seguridad, basado en la recuperación de la aeronave con un sistema de paracaídas balísticos, tan en boga entre las aeronaves ligeras en los últimos tiempos.

Fuente: Nota de Prensa

Y como alguno nos va a preguntar nuestra opinión sobre estos cacharros… recordar que ya hemos escrito largo y tendido, por ejemplo en:

Movilidad Aérea Urbana: La NASA ensaya tecnología de gestión tráfico aéreo basada en IA

La inteligencia artificial llega a las torres de control para ejercer de controlador aéreo en las ciudades. En proyecto de la NASA facilitar el control aéreo en un espacio aéreo urbano que, de triunfar la movilidad aérea urbana, podría congestionarse y saturar el cielo, y a los controladores.

Las ciudades son lugares complicados para volar. Los edificios altos, vientos propios encauzados por las calles, térmicas del asfalto, turbulencias y rotores a sotavento de los edificios… y otros factores presentan desafíos para los vehículos aéreos actuales, como los helicópteros de la policía o de emergencias, y futuras aeronaves de movilidad aérea urbana. Y ahí es donde el proyecto Data & Reasoning Fabric (DRF) de la NASA puede ayudar a gestionar el espacio aéreo urbano y permitir la integración de una gran cantidad de aeronaves en él sin saturarlo. La intención de la NASA con el proyecto DRF es desarrollar una tecnología que ayude a formar un tejido (fabric) de inteligencia conectado y entrelazado que envíe información específica y adaptada a cada aeronave, dondequiera que se encuentre.

Esto es, DRF es un sistema basado en una inteligencia artificial capaz de procesar y distribuir datos en tiempo real a cada una de las aeronaves que esté volando en la ciudad, gestionando el espacio aéreo para permitir la implementación de las soluciones de movilidad aérea urbana, manteniendo los altos estándares de seguridad de la aviación, permitiendo el vuelo seguro dentro de la ciudad.

En resumen, un sistema automatizado y autónomo de control aéreo, entenderemosv que supervisado por controladores aéreos.

En febrero y marzo, el equipo realizará la primera prueba de su tecnología en un área urbana simulada, modelada en el área metropolitana de Phoenix.

Los ensayos

A principios de febrero, la NASA y otras empresas, universidades y oros socios comenzaron las pruebas de campo del prototipo actual

Esta actividad puede ayudar a los proveedores de datos y servicios de apoyo a la toma de decisiones a comprender mejor las necesidades de los futuros usuarios del espacio aéreo y los beneficios de DRF. Los usuarios pueden comparar múltiples servicios para seleccionar el que mejor se adapte a sus necesidades: datos meteorológicos de esta fuente, actualizaciones de tráfico aéreo de otra. Con un mayor desarrollo, esperamos que este modelo impulse potencialmente la innovación en la industria, lo que podría conducir a mejoras en la calidad de los servicios del espacio aéreo.

Kenneth Freeman, investigador principal de DRF en el Centro de Investigación Ames de la NASA en Silicon Valley, California.
https://youtu.be/T5uQqJhP-YI

La prueba de Phoenix analiza escenarios específicos donde DRF podría ser útil, estudiándolos en el contexto de un vuelo simulado de drones para entregar equipos y suministros médicos desde el centro de Phoenix a las áreas más alejadas de la gran región.

Los escenarios futuros podrían involucrar la administración de insulina para personas en lugares con acceso limitado a los servicios de atención médica o cambiar la ruta de un taxi aéreo en caso de eventos meteorológicos adversos.

Los participantes de la prueba están trabajando dentro del ecosistema digital habilitado por DRF, evaluando su capacidad para seleccionar datos y servicios de razonamiento que respalden un vuelo seguro y autónomo.

El potencial de DRF para acelerar la respuesta de emergencia aerotransportada se ilustró en una prueba anterior con el ala californiana de Civil Air Patrol. Usando vuelos simulados de drones, la tecnología DRF ayudó a localizar más rápido de lo habitual incendios forestales inducidos por rayos.

Respuestas ágiles a anomalías

Los ensayos actuales estudian cómo de rápido puede admitir el cambio de ruta de una aeronave debido a varias anomalías diferentes: interrupciones de comunicación, por ejemplo, entre la aeronave y los sensores que envían los datos meteorológicos a la aeronave, ayudas para la navegación o control de tierra, un dron no identificado o inesperado en la ruta de vuelo, y cambios repentinos en las condiciones climáticas locales. ¿Tendrán en cuenta también las bandadas de pájaros?

En tales escenarios, la tecnología DRF está diseñada para alertar a una aeronave que se acerca a una de estas anomalías y conectarla a servicios que pueden proporcionar más información y orientación para responder con agilidad.

Para lograr sus objetivos, DRF utiliza computación perimetral, un sistema en el que los datos se manejan, procesan y almacenan localmente, en lugar de enviarse a una nube o un centro de datos, para reducir la latencia. Esto reduce los retrasos asociados con la transmisión de grandes conjuntos de datos y permite una toma de decisiones más rápida en situaciones donde el tiempo de procesado y distribución es crítico.

Y ya sabéis, si os ha gustado la entrada, ¡seguidnos!

Fuente: NASA

Una start-up británica presenta un autogiro como eVTOL

La compañía británica ARC Aerosystem ha presentado su último proyecto, un «avión eVTOL» que revolucionará el mercado, el LINX P9.

Las imágenes generadas por ordenador podrían corresponderse a un helicóptero compuesto, de hecho su imagen es similar a la del X3 de Airbus Helicopters, con un rotor principal, un ala para descargar al rotor durante el vuelo de avance, y posiblemente así poder reducir la velocidad de giro del mismo aumentando la velocidad de crucero, y dos motores, con sendas hélices, uno en cada semiala.

Lo presentan como un avión de despegue vertical «al salto», cuyo rotor es más sencillo que el de un helicóptero al no estar dotado de un motor que lo mueva, ya que rota debido a las fuerzas aerodinámicas que aparecen al avance. El rotor tan sólo estaría movido por un motor eléctrico, que lo haría rotar hasta alcanzar las revoluciones por minuto que le permitan un despegue vertical.

Es decir, están presentando, por la descripción, un autogiro sin mencionar las palabras autogiro ni gyrocopter, más habitual en inglés, con un motor eléctrico que permite pre-lanzar el rotor y despegar al salto, eso sí.

Por eso no es de extrañar que prometan prestaciones casi de helicóptero, pero a un precio más bajo.

Se define como híbrido-eléctrico, con dos turbohélices. Eso sí, no cierran la puerta a utilizar SAF a corto plazo, y otras tecnologías como la eléctrica o el hidrógeno a más largo plazo.

Hasta ahora, la compañía ha desarrollado y probado en vuelo dos prototipos de drones de carga. Veremos en qué queda el desarrollo de este autogiro con ala fija que pretende revolucionar la movilidad aérea urbana.

Y ya sabéis, si os ha gustado la entrada, ¡seguidnos!

Fuentes: Simple Flying, Aero-Mag, ARC Aerosystems.

eVTOL: los números no salen

No es la primera vez que criticamos los eVTOL, o que recogemos lo que otros medios han publicado sobre su viabilidad o su cerficabilidad. Hoy vamos a intentar resumir los datos económicos que han publicado en distintos artículos Leehan News y Aviation Week.

La movilidad aérea urbana sigue dando de qué hablar. Cada vez hay más aeronaves que se aproximan a la certificación. Y por fin parece que aparecen voces críticas con este “nuevo” medio de transporte en los medios especializados. Algunos, como Leeham News, han sido críticos siempre. Otros han publicado muchas notas de prensa pero sin hacer ninguna crítica a la misma, y ahora parece que empiezan a analizar números. Vamos a intentar resumir todos esos números que han ido haciendo en estos medios. Todo el artículo, y las críticas de estos medios podrían resumirse en una sola pregunta: ¿Si tan alta es la demanda de este tipo de servicios, por qué no se está cubriendo ya con helicópteros ligeros?¿Son realistas son los planes comerciales de sus operadores?

Lilium, que tiene como objetivo redefinir el transporte aéreo urbano y regional, en especial cubriendo rutas que están “desatendidas”. Espera que su Lilium Jet para seis pasajeros pueda ofrecer un precio de 2.25$/asiento-milla mientras opera 10 h. por día. Muchos aviones de fuselaje ancho tienen suerte si logran este nivel de utilización, y Lilium planea hacerlo con vuelos mucho más cortos (el alcance de su avión es de 155 millas).

Las hipótesis de Volocopter para su VoloCity de dos pasajeros son igualmente poco realistas. El eVTOL de 18 rotores, diseñado para vuelos urbanos cortos, tiene un alcance de poco más de 20 millas y costes de asiento-milla similares a los del Lilium Jet. Su utilización anual estimada es de 3000 h por año, comparable a un avión de pasajeros de pasillo único.

Otro eVTOL de los que parece que van a ser certificados en breve y que se puede tomar en serio es el Joby S4, un avión para cuatro pasajeros con una velocidad de 200 mph y un alcance de 150 millas. El precio anticipado por asiento y milla de Joby es de aproximadamente 3$ con una utilización anual de 2500 horas, más que un avión regional típico.

Otra startup, Archer, fue noticia en noviembre cuando United Airlines anunció planes para lanzar su primera ruta eVTOL en Nueva York en 2025, uniendo el Aeropuerto Internacional Newark Liberty y el centro de Manhattan utilizando su nuevo avión Midnight.

¿Por qué estos planes comerciales iniciales incluyen niveles de utilización tan elevados? Porque ese nivel de utilización tan alto es indispensable para que el negocio sea viable, si no es improbable que se amorticen los altos precios de los eVTOL que, a razón de 2-4 M$, son sustancialmente más altos que los helicópteros convencionales. ¡Un Robinson R44 –cuatriplaza- cuesta menos 0.5M$! Si hay tanta demanda acumulada de este servicio, ¿por qué no se cubre el mundo con taxis aéreos R44?

La situación huele a lo que el director gerente de AeroDynamic Advisory, Richard Aboulafi, llama la espiral de vida insostenible: alguien ofrece un producto o servicio con costos unitarios increíblemente bajos. Estos costos bajos se basan en tasas de producción increíblemente altas o suposiciones de utilización increíblemente altas. Estos números increíblemente altos de utilización/producción se basan a su vez en costos unitarios increíblemente bajos. Vamos, maquillar números para demostrar que un negocio inviable sí lo es.

El concepto de trasladar pasajeros de centros urbanos concurridos a aeropuertos no es nuevo. ¡Si ya se pensó en poner una terminal multimodal con autogiros incluidos en el Madrid de los años 30! New York Airways conectó el centro de Manhattan con JohnF. Kennedy, Newark, Teterboro Airport y White Plains Airport desde 1956 hasta 1979 antes de que los accidentes los llevaran a la bancarrota. También en Bruselas podíamos ver en el centro mismo de la ciudad un helipuerto para conexiones rápidas entre ciudades cercanas.

Después de un paréntesis de 40 años, este servicio resurgió recientemente gracias a Blade, que transporta a 12000 pasajeros al año entre el centro de la ciudad y los aeropuertos JFK y Newark con helicópteros convencionales. El valor añadido de este servicio es convincente. Reemplaza un viaje de 2h y 100$ en Uber, taxi o similar por un vuelo de 5 minutos y 195$. El coste operativo directo por vuelo es de aproximadamente$ 500$, (de los cuales 200$ son tasas).

Blade planea hacer la transición de helicópteros convencionales a eVTOL. Su gerencia anticipa que la nueva tecnología inicialmente permitirá una modesta reducción en los costos de vuelo en rutas clave y espera mayores ahorros con el tiempo a medida que se reduzcan los costos de la batería. Ese mismo vuelo Midtown-JFK tendrá costos operativos directos de $430, una reducción del 14%. Esto no es lo suficientemente revolucionario como para respaldar el crecimiento del mercado eVTOL previsto a decenas de miles de millones de dólares para 2030 ni permite los bajos costes que se anuncian para los pasajeros. Tan sólo permite reemplazar los helicópteros que ya prestan un servicio equivalente. Pero, aunque el coste operativo por vuelo sea más bajo, el coste de adquisición de la aeronave es muy superior. El punto de equilibrio es delicado.