Beyond Aero presentó en EBACE su diseño de avión de negocios de pila de hidrógeno

Beyond aero, la empresa francesa que puso en vuelo el primer avión tripulado francés alimentado por hidrógeno, ha anunciado que su siguiente paso es mucho más ambicioso, y en vez de crear un ULM/VLA van a ir a por un reactor de negocios.

La startup Beyond Aero realizó su debut en EBACE, presentando su ultraligero propulsado por hidrógeno, el muy modificado ultraligero francés G1 Aviation del que os hablamos hace unos meses, junto con mucho material gráfico de lo que pretenden que sea su siguiente desarrollo: un avión de negocios de pila de hidrógeno para de 8 a 12 personas.

El avión, más similar al que presentaron en prensa en 2023 que el ultraligero G1. recibe el nombre de Beyond Aero One y pretenden que entre en servicio alrededor de 2030.

Beyond Aero ya ha logrado mucho, habiendo modificado y probado el ultraligero, al que llama Bleriot en honor al aviador francés pionero, para demostrar que su tecnología es viable. Pero no es lo mismo obtener la certificación para un avión como aeronave experimental monoplaza, que desarrollar y certificar una aeronave dedicada al transporte de pasajeros, cuyos requisitos de seguridad son mucho más elevados que los del primero, por la propia naturaleza de la misma aeronave: no es lo mismo operar comercialmente con pasajeros dentro que una aeronave de experimentación con 1 solo tripulante.

Ultraligero G1 modificado, al que llaman Bleriot

En el avión experimental, un ala alta que traza sus orígenes en la Zenair 701, la empresa reemplazó el motor de gasolina por un sistema de propulsión híbrido compuesto por baterías que proporcionan una potencia máxima de 40 kW y una pila de combustible de hidrógeno que genera hasta 45 kW. La configuración tiene la celda de combustible sujeta al asiento del copiloto y es alimentada por tres tanques de hidrógeno ubicados en el maletero, tras los asientos. El hidrógeno lo almacena en forma gaseosa, en tres depósitos de 340 bares.

Beyond Aero se enfrenta al largo y complejo proceso de desarrollo y certificación del avión comercial que nace de una hoja en blanco, y que pretenden que tenga un alcance de 800 nm (1.482 km). Aún se encuentra en las primeras etapas de desarrollo, pero según las infografías mostradas preternden llegar a tener una familia de aeronaves, mediante el conocido sistema de alargar el fuselaje añadiendo rodajas.

Los compradores potenciales han expresado interés en pedidos que la empresa valora en 646 millones de dólares.

Recordamos que el primer avión tripulado a hidrógeno voló en fecha tan temprana como 1955, que en los 80 lo haría el primer avión de aerolínea modificado para volar con hidrógeno, y que en 2009 volaría en España el primer avión tripulado con motor eléctrico y pila de hidrógeno.

Las exigencias operativas de los eVTOL acortan la vida útil de las baterías.

Sabemos que el primer avión eléctrico voló hace más de cincuenta años, y desde entonces cada vez que han vuelto han tenido el mismo problema: si bien los motores son fiables y ligeros, las baterías pesan demasiado y tienen una densidad energética baja.

Con el boom de los vehículos eléctircos terrestres (EV), parece que se ha revivido la fiebre de la aviación eléctrica, y se está intentando utilizar las mismas baterías de litio.

E igual que un motor de automoción puede no ser idóneo para un avión, porque el vehículo de tierra funciona normalmente al 30-40% de su potencia máxima, que sólo necesita en picos mientras que el motor de avión funciona al 75-85% de manera constante, puede que la solución de las baterías eléctricas de los EV no sean la mejor.

Aunque el rendimiento de las baterías de iones de litio en los EVs está bien estudiado, su rendimiento en la industria de la aviación es relativamente desconocido, y aún no está claro cómo estas baterías resistirán las duras condiciones a las que estarán sometidas durante las operaciones de taxi aéreo eVTOL.

Por ello, investigadores del Laboratorio Nacional Oak Ridge (ORNL) en Tennessee llevaron a cabo un estudio sobre los efectos que el perfil de vuelo de una aeronave eVTOL tendrá en las baterías de EV después de ciclos repetidos, simulando operaciones típicas de taxi aéreo.

El equipo de investigación encontró que las demandas de potencia y rendimiento para el vuelo eVTOL reducen el rendimiento y la longevidad de la batería, lo que podría representar una amenaza para la seguridad. También podría aumentar el costo del mantenimiento de las aeronaves, ya que las baterías necesitarán ser reemplazadas con frecuencia. Una vez más, la demanda de potencia del motor, debido al perfil de utilización distinto en un tipo de vehículo y otro, puede suponer un problema.

Cuando los eVTOL despeguen verticalmente, las baterías están sujetas a una demanda de energía muy alta, y según el investigador Ilias Belharouk será el momento en el que la batería puede ser más peligrosa.

Belharouak y su equipo tienen como objetivo mitigar este problema avanzando en la tecnología de baterías de iones de litio y optimizando las celdas de batería para los vuelos eVTOL. Pero para encontrar las mejores soluciones, primero necesitaban definir a fondo el problema. Con este estudio, el equipo buscó determinar exactamente qué sucede con las baterías a nivel subcelular cuando se someten a las altas demandas de potencia de los vuelos eVTOL con ciclos repetidos. Los hallazgos ayudarán a informar su búsqueda de nuevos materiales, especialmente para los electrolitos de la celda, lo que podría llevar a un mejor rendimiento y resistencia.

Altas Demandas de Potencia

Como hemos comentado anteriormente, nada tienen que ver el perfil de uso de las baterías de litio en los eVTOL con el perfil de uso en los automóviles.

Las baterías eléctricas para taxis aéreos también soportarán cargas y descargas más frecuentes y rápidas que los vehículos terrestres. El perfil de uso del coche hace que la mayor parte de su vida operativa esté estacionado. Sin embargo, el perfil de uso de una aeronave comercial es el contrario: si la aeronave está parada está perdiendo dinero. De hecho, en los estudios de viabilidad de los eVTOL suelen citarse tasas de utilización mucho más altas que las de los helicópteros, debido a su supuesto menor mantenimiento. De sobra es conocido que los aviones de aerolínea paran lo mismo. Así que mientras que el perfil de uso de un automóvil es de viajes de entre 10 y 50 minutos con largos periodos de inactividad, se espera que el perfil del eVTOL sea de vuelos durante todo el día, con ciclos de vuelo de 10 minutos intercalados con recargas rápidas, normalmente de otros diez minutos. «Realmente necesitas cargarlos muy rápido y descargarlos muy rápido… lo que ejerce mucha presión sobre estas baterías», dijo Belharouak.

Belharouak y su equipo en ORNL realizaron pruebas simuladas de baterías eVTOL utilizando baterías representativas que construyeron en el lugar en la Instalación de Fabricación de Baterías del Departamento de Energía. Monitorizaron el rendimiento de la batería durante el ciclo y luego evaluaron los componentes de la batería posteriormente para verificar la corrosión y otros cambios químicos o estructurales utilizando un microscopio electrónico de barrido.

«Tu batería no es solo la vida útil de 1,000 ciclos. Es lo que sucede dentro de un ciclo lo que te dice si tu sistema funcionará o fallará», dijo Marm Dixit, el investigador principal del estudio. Y los riesgos son mayores, ¡no son vehículos que puedas parar en un arcen en caso de problemas, estan volando!

Para la simulación, los investigadores emplearon una alta tasa de descarga durante 45 segundos, lo que se espera que dure el despegue vertical más la transición a crucero, seguido de una descarga a baja velocidad para simular el vuelo de crucero.

Durante el ciclo de crucero, la batería recuperaba su condición normal. Pero la sucesiva repetición de este tipo de ciclos rápidos e intensos hacía que las baterías, electrolito y ánodo se degradaran, no así el cátodo.

La solución ¿está en el electrolito?

Así que estamos con el problema de siempre, pero ampliado. No sólo necesitamos una batería de mayor densidad energética, sino que además deben aguantar estos ciclos tan distintos a los de los automóviles.

Y mientras se dependa de las baterías de litio, hay que mejorarlas. Los investigadores están constantemente buscando maneras de hacer que las baterías funcionen mejor y duren más utilizando diferentes materiales para sus componentes, incluyendo ánodos, cátodos y electrolitos. Por ejemplo, el fabricante de baterías Amprius está utilizando ánodos de nanocables de silicio en las baterías que ofrece para aplicaciones de aviación eléctrica.

Belharouak y su equipo creen que la solución para hacer que las baterías de iones de litio sean más adecuadas para las operaciones de eVTOL radica en el electrolito, el medio entre el cátodo y el ánodo de una batería por el que los iones de litio viajan durante la carga y descarga.

Si bien el equipo de ORNL se está enfocando en soluciones de electrolito por ahora, el objetivo final del programa de investigación es eventualmente desarrollar una química de batería completamente nueva que podría reemplazar a las baterías de iones de litio para aeronaves eléctricas.

Ejemplos de nuevas químicas de baterías que podrían ser prometedoras para aplicaciones de aviación incluyen las baterías de estado sólido, que reemplazan el electrolito líquido o en gel con un material sólido, o las baterías de litio-azufre, ambas de las cuales pueden ofrecer las mayores densidades de energía necesarias para habilitar vuelos de mayor alcance.

Belharouak enfatizó que cualquier tipo de baterías destinadas a aplicaciones de eVTOL «deberán ser entendidas y comprendidas en función del conjunto de protocolos a los que van a ser sometidas, no solo en función de la densidad de energía y potencia».

Fuentes: AIN Online y Oak Ridge National Laboratory

Sikorsky apunta a los rotores basculantes y a la electrificación

Los primeros intentos de helicóptero de alta velocidad de Sikorsky fueron el X2 o el Raider. Helicópteros compuestos, con dos rotores contrarrotatorios y una hélice impulsora. Por eso, hasta ahora hablar de aeronaves de rotores basculantes o convertiplanos era hablar de Bell, con su Osprey o su Valor, o de Leonardo, antes Augusta, y su modelo 609. Y ahora tenemos que añadir también a Sikorsky, que acaba de presentar su modelo de rotor basculante.

Las aeronaves conocidas como convertiplanos tratan de aunar en un solo desarollo lo mejor de los aviones y lo mejor de los helicópteros, permitiendo el vuelo a punto fijo, como en un helicóptero, y pero con la economía de combustible de crucero de un avión. Pero la velocidad de crucero queda limitada por las grandes palas de los rotores.

Cuando la punta de pala alcanza velocidad supersónica la hélice pierde eficiencia, y debido a la combinación de velocidad de rotación de la hélice/rotor más la de traslación de la aeronave, la velocidad de un avión de hélice está limitada. Y debido a que el radio del rotor es mucho mayor que el de una hélice, la velocidad lineal de la punta de pala es mucho mayor, y por tanto el límite de velocidad de vuelo del helicóptero, o del convertiplano, es mucho menor que el de un avión con hélice.

La propuesta de Sikorsky no se limita sólo a una aeronave con dos rotores, sino a toda una familia, con distintos grados de electrificación, con convertiplanos de mayor tamaño y con helicópteros.

La electrificación de las aeronaves permite utilizar motores de bajo mantenimiento y alta fiabilidad, como son los eléctricos. Elimina la necesidad de pesados reenvíos y reductoras. Pero además dota de flexibilidad al desarollador, facilitando el cambio de fuente de energía, bien un generador eléctrico conectado a una turbina de gas, bien una pila de combustible, una de hidrógeno, distintas configuraciones de baterías… Y de paso intentar consumir menos, y ser más verdes. Pero de momento, sólo tenemos unas imágenes creadas por ordenador.

Nota de prensa

ANAHEIM, California, 27 de febrero de 2024 – Sikorsky, una compañía de Lockheed Martin (NYSE: LMT), presentó hoy su plan para construir, probar y volar un demostrador de despegue y aterrizaje vertical híbrido-eléctrico (HEX / VTOL) con una configuración de ala basculante.

El diseño es el primero en una serie de grandes aeronaves VTOL de próxima generación, que van desde helicópteros más tradicionales hasta configuraciones VTOL con alas, que contarán con diferentes grados de electrificación y un sistema avanzado automatismos para vuelo opcionalmente pilotado.

“Nunca dejamos de innovar en Sikorsky”, dijo el presidente de Sikorsky, Paul Lemmo. “La autonomía y la electrificación traerán un cambio transformador a la seguridad de vuelo y la eficiencia operativa de grandes aeronaves VTOL. Nuestro programa demostrador HEX proporcionará ideas valiosas mientras buscamos una futura familia de aeronaves construidas a la escala y configuraciones preferidas relevantes para clientes comerciales y militares”.

El programa HEX pondrá énfasis en un alcance superior a las 500 millas náuticas a alta velocidad, menos sistemas mecánicos para reducir la complejidad y costos de mantenimiento más bajos.

Sikorsky Innovations, el grupo de prototipado de la compañía, y GE Aerospace están finalizando diseños para construir una plataforma de pruebas de sistemas de energía híbrido-eléctricos con un motor eléctrico de 600KW. La plataforma de pruebas es un primer paso para evaluar el rendimiento en vuelo estacionario del demostrador HEX siguiente, una aeronave de peso máximo al despegue de 9,000 libras con un turbogenerador de clase 1.2MW y electrónica de potencia asociada.

“Dentro del pilar eléctrico de Sikorsky, estamos diseñando motores eléctricos, electrónica de potencia y nuestro propio hardware de gestión de vehículos y actuación”, dijo Igor Cherepinsky, director de Sikorsky Innovations. “HEX integrará estos componentes, mostrará la creciente madurez de nuestro conjunto de autonomía MATRIX™ y el potencial de sistemas sin necesidad de mantenimiento. Ver los resultados nos llevará a diseños más eficientes en general”.

Sikorsky Innovations se formó en 2010 para superar los desafíos tecnológicos de la velocidad, autonomía e inteligencia de las alas rotatorias. Conozca más sobre los logros del equipo de ingeniería en estas áreas de enfoque tecnológico y su nuevo enfoque en la electrificación y la automatización.

El dirigible del Co-fundador de Google tiene luz verde de la FAA para el primer vuelo

Sergey Brin, co-fundador de Google, fundó LTA (lighter than air) Research con intención de crear dirigibles que pudieran transportar personas o bienes en zonas remotas con malas comunicaciones y/o en caso de desastres naturales.

LTA ha estado diseñando y construyendo este dirigible de última generación en los últimos años. Su estructura está formada por mamparos de titanio y barras de fibra de carbono, y estará propulsado por 12 motores eléctricos.

Y gracias a IEEE sabemos que la FAA le ha concedido en septiembre un certificado de aeronavegabilidad especial, lo que significa que en breve empezará los ensayos en vuelo.

El certificado permite a LTA volar el Pathfinder 1 dentro de los límites de Moffett Field y el espacio aéreo del vecino aeropuerto de Palo Alto, a una altura de hasta 460 metros (1500 pies). Esto le permitirá aventurarse sobre el sur de la Bahía de San Francisco, sin interferir con los aviones que entran o salen de los aeropuertos comerciales de San José y San Francisco International.

El enorme dirigible inicialmente estará sujeto a un mástil de amarre móvil para pruebas en tierra al aire libre, antes de realizar 50 horas de vuelo a lo largo de unos 25 vuelos.

Doce motores eléctricos distribuidos en los laterales y la cola del dirigible impulsarán al dirigible, que alcanzará velocidades de hasta aproximadamente 120 kilómetros por hora. Una resistente capa de material laminado de Tedlar forma el revestimiento de la aeronave, y contiene en su interior 13 bolsas de helio de nylon ripstop. Estas bolsas tienen instalados sistemas lidar, para controlar el nivel de gas de su interior.

Pathfinder 1 cuenta con un sistema motor híbrido, con dos generadores diésel de 150 kilovatios que trabajan junto a 24 baterías para proporcionar energía a los motores eléctricos, según una reciente presentación del CEO de LTA, Alan Weston. Él afirmó que LTA tiene planes de utilizar hidrógeno en futuras versiones del dirigible, tal vez como combustible para futuras celdas de combustible o motores.

Aunque el Pathfinder 1 está diseñado para ser operado por un solo piloto, cuenta con doble-mando y, según la carta de LTA a la FAA, tendrá un segundo piloto a bordo «para las pruebas de vuelo iniciales hasta que se pueda evaluar la carga de trabajo del piloto». La góndola que LTA está utilizando para el dirigible fue diseñada por la famosa compañía Zeppelin en Alemania y puede acomodar hasta 14 personas, aunque durante las pruebas no se permitirán pasajeros.

Con una longitud de 407 pies (124 metros) y un diámetro de 66 pies (20 metros), es considerablemente más largo que el Airlander 10, aunque tiene menos de la mitad de su anchura, lo que le convierte en el mayor dirigible construido en los Estados Unidos desde el Makom. Puede que no califique como la aeronave más grande del mundo, pero sigue siendo absolutamente enorme, aproximándose al doble de la longitud de un Airbus A380. Y aun así, tan solo es una prueba de concepto de lo que vendrá después, el Pathfinder 3: Un dirigible de 984 pies (300 metros). Esto es incluso más grande que los gigantescos dirigibles de la clase Hindenburg de 804 x 135 pies (245 x 41 metros) de la década de 1930, que siguen siendo hasta el día de hoy las aeronaves más grandes jamás construidas.

En última instancia, LTA tiene la intención de utilizar sus aeronaves para misiones humanitarias, transportando carga y personal a áreas inaccesibles por carretera. Brin dirige una organización sin fines de lucro independiente de LTA, llamada Global Support and Development, que ya ha llevado a cabo dichas misiones por mar, en el Caribe, América Latina y el Pacífico Sur.

Comentarios

Si bien es cierto que la necesidad de infraestructuras necesarias para dar soporte en tierra a este tipo de aeronaves son escasas, sería interesante saber cómo se piensan solventar los problemas típicos de los dirigibles, que son algo difíciles de manejar en tierra y hace falta anclarlos. De hecho, por ese motivo en la última oleada que hubo de regreso al dirigible se apostaba por aeronaves híbridas, donde el 80% de la sustentación venía del helio y el resto de la forma de fuselaje sustentador de la aeronave.

Fuentes

Airbus A330MRTT completa el primer vuelo de prueba 100% SAF en ambos motores

La Royal Air Force, Airbus, la agencia de Apoyo y Equipos de Defensa del Ministerio de Defensa del Reino Unido, la empresa británica de arrendamiento de aviones AirTanker y el fabricante de motores Rolls-Royce, con el combustible suministrado por Air BP, han llevado a cabo el primer vuelo del mundo 100 % con combustible de aviación sostenible (SAF) alimentando ambos motores utilizando un avión militar en servicio. También es el primer vuelo 100% SAF de cualquier tipo de avión realizado en el espacio aéreo del Reino Unido.

Voyager en Brize Norton, UK

El avión era la variante británica del MRTT, elVoyager. Despegó el miércoles sobre RAF Brize Norton en Oxfordshire, Inglaterra, propulsado completamente con combustible de aviación 100% sostenible en ambos motores, allanando el camino para una gama de posibilidades para el futuro de volar aviones militares.

Fieles a nuestro propósito de ‘ser pioneros en la industria aeroespacial’, hemos apoyado con mucho gusto a la Royal Air Force en este histórico vuelo de prueba con combustible sostenible. Felicito a nuestro cliente del Reino Unido por este logro que ayuda a allanar el camino para una reducción sostenible de las emisiones de carbono de nuestras flotas de aviones militares. Los ingenieros de Airbus han hecho una contribución significativa a esta misión de la RAF al proporcionar experiencia en el terreno en las últimas semanas y asegurar los permisos de vuelo militares necesarios del Ministerio de Defensa”.

Michael Schoellhorn, CEO de Airbus Defence and Space

El vuelo de 90 minutos, pilotado por un equipo combinado de prueba de vuelo de Airbus, la RAF y Rolls-Royce, replicó una salida de reabastecimiento de combustible aire-aire y fue presenciado por representantes senior de la RAF y de la industria.

La RAF dijo que demostró el potencial de su futura capacidad operativa, asegurando la capacidad de contribuir a la defensa del Reino Unido donde y cuando sea necesario.

Desde la perspectiva de la tripulación, la operación del SAF fue ‘transparente’, lo que significa que no se observaron diferencias operativas. El Plan de Pruebas fue exhaustivo y robusto y nos ha permitido comparar SAF con JET1 culminando en un vuelo sin una sola gota de combustible fósil. El trabajo en equipo fue un factor clave, armonizando la experiencia de Airbus, Rolls-Royce y la RAF. Nos sentimos muy orgullosos de ser una pequeña parte de este gran paso hacia la aviación sostenible”.

piloto de pruebas experimentales y capitán del vuelo Jesús Ruiz

El SAF o biocombustible avanzado de última generación no es un combustible de origen fósil, sino que viene de materiales como residuos de cocina, plantas, y otras fuentes que se consideran sostenibles y renovables. Ese caracter sostenible y renovable hace que en lugar de ser un ciclo abierto de consumo sea lo más parecido a un ciclo cerrado. Si queréis saber más sobre él, tenemos un artículo dedicado en exclusiva para él que explica los distintos tipos de SAF que existen, como se extraen, etc: SAF (Sustainable Aviation Fuel) SC (Sin Complejos) o ¿qué es el SAF?.

Press Release