Primer vuelo del Elektra Trainer, avión ultraligero eléctrico

Elektra Trainer en su primer vuelo

El equipo de Elektra lleva más de diez años de experiencia acumulada en aviones eléctricos. La primera vez que aparecieron en nuestras páginas fue en 2010, y hacía mucho que les teníamos perdida la pista. Nos ha alegrado volver a leer de ellos, aunque parece que han rebajado su nivel de expectativas y han eliminado el requerimiento de avión solar para este entrenador.

La aeronave es muy aerodinámica, con un ala de gran alargamiento, lo que reduce la resistencia inducida, y con un tren retractil biciclo, con pequeñas ruedas auxiliares en punta de plano, al estilo de los veleros. Esta configuración de tren le permite reducir la resistencia y ahorrar peso.

Además Elektra trabajaba en hangares con techos solares para recargar sus aeronaves mientras están en el hangar, y en sistemas de diagnóstico avanzado, para mejorar el mantenimiento predictivo de las aeronaves.

Elektra One, el prototipo monoplaza, durante su primer vuelo en 2011

El Elektra Trainer hereda claramente sus líneas de su predecesor monoplaza, el Elektra ONE.

El Elektra Trainer, como su antecesor Elektra ONE tiene un tren biciclo retractil con ruedas auxiliares de punta de plano, típico de los veleros

Según su nota de prensa:

El 29 de junio de 2022, un avión ultraligero -según la normativa alemana- eléctrico biplaza Elektra Trainer de Elektra Solar GmbH (una empresa derivada del Instituto DLR de Robótica y Mecatrónica) despegó para su vuelo inaugural en el Aeropuerto Internacional de Memmingen.

El avión despegó entre jets de negocios y aviones comerciales en menos de 100 m en silencio y sin emisiones. Después de unos 20 minutos de vuelo, el piloto de pruebas Uwe Normann aterrizó, confirmando las extraordinarias características de la aeronave, que incluso superó las expectativas de los desarrolladores, llegando a velocidades ascensionales de más de 1500fpm (8 m/s), volando en vuelo de crucero bajo con solo unos 10 kW (13.4CV) de potencia, sin vibraciones en la cabina y con una estabilidad perfecta. Al aterrizaje la batería tenía un remanente de un 80% de carga.

Elektra Trainer fue diseñado como un avión ideal para escuelas y clubes de vuelo. Los costes operativos son inferiores a 60 EUR/hora, que -según la nota de prensa- es aproximadamente la mitad del coste de un avión ultraligero clásico. Esta diferencia de precio aumentará de un año a otro debido al rápido aumento de los costos del combustible.

Con esta aeronave, Elektra Solar GmbH pone en funcionamiento una infraestructura en la nube para el diagnóstico automático del sistema y el mantenimiento preventivo (Digital Aircraft Platform). Los datos de estado del sistema del vuelo se cargan en una nube y se analizan automáticamente con la ayuda de algoritmos de IA. Los errores y desviaciones del estado normal se comunican al propietario y/o a una empresa de mantenimiento. Gracias a esta tecnología, se incrementará la seguridad de funcionamiento y se reducirá aún más el esfuerzo de mantenimiento.

Después de este vuelo inaugural, comenzarán las pruebas de vuelo de certificación, con el objetivo de completar la certificación UL alemana para fines de este año.

  • Autonomía: 2,5 horas
  • Alcance: 300 km
  • Cabina lado a lado de 1,25 m de ancho
  • La burbuja de plexiglás es cómoda para pilotos de 2 m de altura
  • Tiempo de montaje desde el remolque de transporte hasta que esté listo para volar: unos 30 minutos
  • Estación de carga portátil de 12 kW
  • Hélice de paso variable
  • Tren de aterrizaje retráctil eléctrico
  • Plataforma digital de aeronaves para diagnóstico automático de sistemas y mantenimiento preventivo
  • Tasa de planeo superior a 25:1
Velocidades
Crucero 120 km/h
Pérdida con Flaps 82 km/h
Pérdida sin flaps 91 km/h
Máxima velocidad operacional 180 km/h
VNE 205 km/h
Velocidad ascensional 3 m/s (590fpm)
Distancias de despegue y aterrizaje
Despegue 200 m
Aterrizaje 200 m
Alcance y Autonomía
Autonomía máxima 2.5 hours
Alcance máximo 300 km
Motorización
motor eléctrico HPD-50D
Potencia máxima 50 kW | 67CV
Potencia máxima continua 40 kW | 54CV
Potencia de velocidad de crucero 12 kW | 16CV
Máxima capacidad de la batería 35 kWh
Pesos
MTOW 600 kg | 1322,77 lb
Peso en vacío pero con la máxima cantidad de baterías 400 kg | 881,85 lb
Dimensiones
Envergadura 14.5 m
Alargamiento 19
Diámetro de la hélice de paso variable 1.75 m
Ancho de la cabina 1,20 m
Otros
Mejor planeo 28:1
Nivel de ruido <50 dB
Certificación LTF-UL-2020 (normativa ULM alemana)

Elektra Solar

WTF: Wheel and Tire Failure (análisis de riesgos particulares)

Panel de la Belly Fairing justo sobre el pozo del tren dañado por un fallo de una rueda

El 1de julio aterrizaba un A-380 sin un panel de la Belly Fairing (literalmente, carenado ventral), que no fuselaje. La Belly Fairing es un carenado que cuelga bajo el fuselaje y tapa sistemas o el tren y no tiene responsabilidad estructural.

Ubicación de la Belly Fairing Fig 1 (2) y vista esquemática en perspectiva Fig2
Esquema de cómo va colgada la Belly Fairing del fuselaje (109) a travñes de barras (211)

Éste tipo de fallos requiere lo que se denomina PRA (particular risk analysis – análisis de riesgos particulares). Consiste en analizar todas las trayectorias posibles del proyectil y analizar los daños y por tanto fallos que puede producir,y su impacto en la seguridad.

Arcos de trayectorias que pueden seguir los restos desprendidos tras el fallo

El trozo desprendido puede ser un trozo de neumático, un trozo de llanta, o ambos. La masa de estos trozos puede llegar a los 2kg, y la velocidad a los 100m/s (360km/h), así pues su energía cinética es muy alta, ¡la equivalente a dejar caer esos dos kg desde 510m de alto!

El análisis consiste en verificar todos los elementos que se pueden interponer en el camino del proyectil en el que se ha convertido el trozo de neumático o de llanta y analizar qué ocurre.

Normalmente se rellenan muchas tablas con datos, como el ángulo de salida del proyectil, parte impactada por el mismo, efectos en caso de perder ese conjunto impactado y criticidad del fallo.

De este análisis pueden surgir modificaciones de diseño, como apantallar bombas hidráulicas o realizar análisis estructurales adicionales para ver si las piezas que se encuentra,ej herrajes de cogida o del flap, aguantan el impacto o no, o si el daño puede ser admisible por no causar un fallo estructural, por ejemplo en el caso de impactar solo en un panel de un carenado.

Estadísticas de WTF desde 1966 a 2005

Como véis, nada se deja al azar en la aviación, y los análisis de seguridad son de los procesos más importantes que existen durante el diseño y certificación de las aeronaves.

Fuentes

La imagen de los daños en el 380 viene de esta noticia, las tablas y gráficos explicando qué es el WTF vienen de esta presentación, y las imágenes descriptivas de la belly fairing vienen de esta otra presentación. Lo que os cuento acerca de este tipo de fallos y su análisis vienen de que trabajé en ello una temporada.

PD: Sí estuve una temporada con WTF, aunque para que el censor de tacos del correo no nos diera problemas lo solíamos abreviar como W&TF, Wheel and tire failure.

Tanques que vuelan: el carro velocce que volaba en el SM-82

El SM-82 con el tanque ligero L-3

El transporte de vehículos blindados a larga distancia siempre ha sido un gran problema, y lo sigue siendo. Por eso, durante los años 30, se idearon varias formas de hacer que los tanques volasen. Y aunque ya os habíamos hablado de algunas, (y otra más) hoy os traemos otro ejemplo más: el carro italiano L-3 transportado en el Savoia-Marchetti SM-82.

El carro velocce procedía del concepto de diseño de carro ligero que se puso de moda tras la tanqueta Carden-Lloyd. Era biplaza y contaba con un blindaje extremadamente ligero (14mm en el mejor de los casos) como para enfrentarse incluso a los pobremente armados pero muy blindados carros britáicos. Por su velocidad campo a través y su alta movilidad podía ser útil como vehículo de exploración. Pero fue su bajo peso y reducido tamaño el que hizo plantearse al ejército italiano que podía ser un carro aerotransportado, y dotar así de movilidad aérea a sus unidades mecanizadas ligeras.

Ruta de Italia a Etiopía

Para poder desplegar carros en Abisinia (Etiopía) de forma rápida desde Italia, a finales de abril de 1939 se pide a SIAI que modifique dos SM-82 para transportar distintos pertrechos militares, desde el carro ligero L-3 hasta cañones de artillería. Pero además tuvo que modificarse como transporte de tropas o material y bombardero nocturno. Esta variedad de cargas hizo que el desarrollo de las aeronaves fuera más lento de lo previsto, y en octubre de 1940 el problema estaba lejos de estar resuelto.

Tanque ligero L-3 cargado en la bodega de bombas del SM-82

Tras las pruebas en vuelo, se consideró para el transporte de la versión lanzallamas del carro, para su uso por las tropas paracaidistas.

Finalmente no se utilizó de forma operativa, posiblemente poque su uso sería demasiado eventual.

Fuentes

Despegar desde el techo de una Renault 4 ¿el portaaviones más pequeño del mundo?

Tipsy Nipper sobre el techo del Renault R4

El Tipsy Nipper es un pequeño avión ligero, monoplaza y con capacidades acrobáticas, desarrollado por el ingeniero belga Ernest Oscar Tips en Gosselies, cerca del actual Aeropuerto de Bruselas Sur, en Charleroi.

Como buen ultraligero, se desarrolló para ser barato de producir, fácil de volar y más fácil de mantener. «Nipper» era el apodo de su nieto.

Pesaba 165kg en vacío y sin motor. Originalmente se diseñó para volar con el motor bóxer refrigerado por aire Volkswagen montado por el escarabajo, aunque actualmente monta todo tipo de motores, desde los ubicuos Rotax de dos tiempos a los Jabiru de 80 CV.

El primer vuelo se produjo el 12 de diciembre de 1957. Se fabricó del 59 al 61 por Avions Fairey, la división belga de la famosa marca británica. Fairey produjo 59 aviones completos y 78 kits. La producción se detuvo cuando Fairey se centró en los F104 Startfighter. Desde entonces cambió varias veces de propietario. Hoy día se comercializa como avión en kit para construcción amateur por Nipper Aircrafts.

En el vídeo que se muestra sobre estas líneas, se muestra un número circense en el que el avión despega y aterriza en el techo de una Renault R-4, lo que hace que sea posiblemente el portaaviones más pequeño del mundo.

Si pasáis por el Real Museo del Ejército Belga, acercaros por su pabellón de aviación, ¡allí podréis verlo!

Fuentes: Nipper Aircraft, Wikipedia, y mis visitas al Museo del Ejército en Bruselas.

El avión-ambulancia francés con cabina desmontable

Las ventajas de las cabinas desmontables las hemos tratado en otras ocasiones en el blog, y hemos visto conceptos desde antes de la Segunda Guerra Mundial, a los más modernos de Airbus y Boeing y el clásico XC-120, o incluso bajo el 747 para cargas sobredimensionadas.

Por recordar un poco estas ventajas, básicamente el avión puede cargar y descargar a los pasajeros, carga o, en este caso, enfermos, y seguir realizando más misiones mientras que la cabina es atendida en tierra, llevada a una terminal o a un hospital.

Y gracias a Marlène Aviation hemos descubierto otro diseño de cabina desmontable, francés, de la Société Provencale de Construction Aéronautique (SPCA).

Tipo 30 o Avión de combate multiplaza

El avión de combate

El tipo 70 estaba basado en el tipo 30 o avión de combate multiplaza, como le denominaba también SPCA.

Este avión fue diseñado por el ingeniero Hubert, padre de los aviones de carreras Bernard, para participar en el concurso de 1928 para la búsqueda de un avión de combate multiplaza. Era enteramente metálico y tenía configuración de fuselaje central, que albergaba a la tripulación, y doble botalón, con un estabilizador vertical al final de cada uno de ellos, y un empenaje horizontal que unía a ambos.

El ala de 26.5m de envergadura, en voladizo, estaba dividida en tres secciones. Una central rectangular, donde se encontraba la cabina de pilotaje, y dos secciones trapeciales a partir de sendos botalones.

Los botalones, de sección triangular, contaban con dos puestos de ametrallador justo al final del borde de salida del ala, como se aprecia en la imagen inferior. Estos puestos de ametrallador estaban comunicados con el fuselaje central de pilotaje a través de unos pasillos que corrían por el interior de los botalones y el ala.

Alzado planta y perfil

El fuselaje central contenía los puestos de pilotaje, en tándem, así como el puesto del observador/navegante, situado tras ellos. El puesto de navegante contaba con otra ametralladora.

Bajo los botalones había posibilidad de llevar bomas o cámaras de reconocimiento.

Typo 30 en vuelo

Fue presentado en el aeródromo de Villacoublay, y alcanzó una velocidad de 250km/h. Sin embargo sus botalones tenían una horrible tendencia a vibrar a altas velocidades, llegando el piloto en una de las pasadas a lesionarse uno de los pies y a producirse desgarros en el fuselaje.

El avión ambulancia.

Tipo 30 con la cabina desmontable y sin ella, y cabina desmontable arrastrada por semioruga

Por su peculiar configuración se vio el potencial de modificarlo y se propuso convertirlo en avión ambulancia con una cabina desmontable.

Montaría motores que deberían tener de 230 a 250CV.

El, ya de por si largo, tren de aterrizaje principal sería alargado aún más, para dejar hueco bajo el fuselaje a la cabina de transporte de heridos.

Esta cabina y la de mando no tenían ningún tipo de unión, por lo que no se podía pasar de una a otra. Tampoco había mandos instalados en la cabina inferior, pudiéndose controlar el avión sólo desde el cockpit.

La cabina medicalizada podía transportar 12 heridos sentados o seis tumbados, más el personal médico. Aunque al ser cabinas desmontables y modulares, podían haberse habilitado para transporte de pasajeros o mercancías, o provisiones militares.

El compartimento modular se instalaba sobre un chasis con ruedas, de tal modo que era sencillo manejar en tierra por un tractor o cualquier otro vehículo que estuviera preparado para el arrastre de cargas, remolcando la cabina hasta un hospital, o donde fuera menester entregar la carga o el pasaje.

Dos SPAC 70 fueron abandonados después de que el Amiot 140, ganador del programa de bombarderos contra el SPAC 30, fuera elegido por los servicios oficiales.

Fuentes

  • Les Ailes, 26-11-31
  • l’Aeronautique (Juillet 1929)
  • Les Constructeurs Français 1919-1945, gracias a Secret Projects. Este libro recoge básicamente la información de Les Airles 26-11-31 y cuenta cómo es cancelado el proyecto, así como los problemas de vibración.