Y así ha parecido ser. Una cosa es su viabilidad técnica, a pequeña escala, casi en ensayo de laboratorio, y otra la entrada en servicio a nivel industrial, pues son muchos los retos a solventar.
El mayor de ellos, el logístico (no sólo tener una producción suficiente, sino un ecosistema de empresas que permita su distribución, almacenaje y comercialización). Y es por ello que entendemos que Airbus ha decidido retrasar en su agenda, ¡de cinco a diez años! la entrada en servicio del hidrógeno, tecnología en la que lleva invertida mucha cantidad de dinero en su concepto ZEROe.
Airbus Helicopters se subió al carro de la movilidad aérea urbana y los eVTOL hace unos años, allá por 2016, y presentó el CityAirbus NextGen en 2021. Entonces, esperaba poder lanzar un nuevo producto que entrara en servicio hacia finales de esta década. El primer vuelo del demostrador CityAirbus NextGen tuvo lugar en noviembre en la sede del fabricante en Donauwörth, al sur de Alemania. Hoy nos enteramos de que se baja del carro, al menos de momento, por sus dudas sobre la viabilidad de las baterías.
Airbus Helicopters pausará las actividades del CityAirbusNextGen una vez que termine su campaña de pruebas de vuelo, ya que considera que las tecnologías clave aún no están listas para respaldar el lanzamiento de un nuevo programa de desarrollo.
El director ejecutivo Bruno Even, durante una rueda de prensa el 27 de enero sobre el desempeño de económico y resultados de la compañía dijo que no veían que las condiciones fueran las adecuadas para lanzar el programa, en particular dijo que la madurez de las baterías no es suficiente para respaldar la misión propuesta para el CityAirbus NextGen: transportar cuatro pasajeros en rutas de 80-100 km (43-54 millas náuticas).
Even indicó que la aeronave continuará volando durante todo 2025 para que el fabricante «realmente pueda aprovechar las lecciones sobre la nueva arquitectura y la tecnología a bordo». Esas tecnologías podrán ser implementadas «en toda Airbus», dijo, ya sea en plataformas de alas fijas o rotatorias.
Seguro que habéis comprobado que siempre que hablamos de aviones eléctricos son aviones con alas muy esbeltas, esto es, de gran alargamiento, casi más próximas en diseño a las de un velero o un motovelero que a las de un avión de aerolínea o un avión ligero.
La ecuación se puede derivar de forma sencilla teniendo en cuenta que el avión vuela la mayor parte del tiempo en crucero, que se puede asimilar a un movimiento rectilíneo y uniforme, y por tanto la sustentación es igual al peso (L=W), la resistencia igual al empuje (D=T), que sustentación y resistencia se relacionan a través de la polar y que la potencia necesaria para volar en crucero es P=T·v·nu, siendo v la velocidad de vuelo y nu el rendimiento del grupo motopropulsor (el rendimiento del motor multiplicado por el de la hélice, por ejemplo).
Si alguien está interesado en el desarrollo matemático de la ecuación, puede encontrarlo en muchas fuentes, como la que hemos enlazado atrás, esta o esta otra.
Básicamente nos dice que el alcance (R de Range) depende del rendimiento motopropulsor, el consumo de combustible específico (SFC), la fineza aerodinámica y la relación entre la masa inicial y la final (y por tanto el combustible que puede consumir).
Esta sencilla ecuación permite comparaciones rápidas entre distintos diseños con parámetros sencillos y que pueden obtenerse fácilmente de los fabricantes, o al menos pueden estimarse con relativa facilidad. Asi que se pueden comparar diseños de forma teórica antes siquiera de haber empezado un desarrollo de detalle.
Se puede realizar un ejercicio similar para derivar esta ecuación para aviones híbridos, o para aviones eléctricos. Nosotros nos centraremos en la ecuación derivada para aviones eléctricos.
Donde Cb es la densidad energética de las baterías (en unidades de energía/masa kW·h/kg, por ejemplo), g es la aceleración de la gravedad, CL/CD es su fineza aerodinámica (la relación entre el coeficiente de sustentación y el de resistencia), Wbatt es el peso de las baterías, WTO es el peso al despegue, y ηi,ηm,ηp son los rendimientos del inversor, del motor y de la hélice.
Una versión aún más simplificada fue la que dio Archer en su web:
R=Ebatt· η·(CL/CD)/MTOW
ó
R=Cb·Wbatt· η· L/D / (MTOM · g)
Donde Ebatt es la energía en la batería y η el rendimiento motopropulsor.
Lo que nos quiere decir que el alcance del avión está definido básicamente por su aerodinámica, la densidad energética de sus baterías y la masa de baterías. En el avión eléctrico no entra en juego el peso final y el inicial, puesto que al no consumir combustible la masa al despegue y al aterrizaje serán la misma (lo que, por cierto, hará que el tren de aterrizaje sea más pesado que en un avión convencional, que no soporta el mismo peso en el aterrizaje que en el despegue).
Sobre el rendimiento motopropulsor apenas tendremos capacidad de decisión, puesto que el rendimiento del motor eléctrico rondará el 90% mientras que el de las hélices está entorno al 85%, así que este rendimiento motopropulsor se puede considerar como constante e igual a un 76.5%.
Nos quedan pues dos parámetros, el de la densidad energética de las baterías, que también se puede considerar constante y dependiente del estado del arte del momento, y la fineza aerodinámica.
Es decir, que si queremos optimizar nuestro diseño, realmente tan sólo podemos actuar sobre un parámetro que dependa de nosotros y no de los proveedores: la fineza aerodinámica.
Para maximizar esa fineza aerodinámica, no queda otra que recurrir a alas de gran alargamiento, tipo motovelero y planeador. Y es por esto que todos los aviones eléctricos cuentan en sus diseños con alas de gran alargamiento, puesto que es un parámetro con el que sí pueden «jugar» los diseñadores con facilidad, siempre teniendo en cuenta que el alargamiento del ala viene limitado por el ancho de la pista, de los aparcamientos, de los hangares… que limitan la envergadura, u obligan a soluciones ingeniosas como alas plegables. ¡Ah! Y si alguno os lo preguntabais, sí, estas ecuaciones de atrás son las que explican de forma sencillael desarrollo del nuevo Boeing con ala arriostrada.
Por finalizar, las densidades energéticas reales hoy en día rondan los 400W·h/kg, aunque se espera alcanzar los 600, e incluso se han llegado a alcanzar cotas superiores, pero siempre en condiciones de laboratorio, no de mundo real.
Y como la densidad se puede considerar también constante, esto nos lleva a una interesante conclusión (que no vamos a desarrollar mucho más porque ya lo hicieron Calin Gologan y Raphael Giesecke): Con la mejor tecnología de baterías que se espera tener, el alcance de los aviones eléctricos estará limitado a unos 500km, 800km en los casos más optimistas. Ésto sin consideraciones de cálculo de desvíos a aeropuertos alternativos. Lo que explica el por qué desde el comienzo los grandes constructores nunca han apostado por los aviones eléctricos, y en este blog siempre hemos defendido que, en el mejor de los casos, quedarán limitados a vuelos recreativos, de entrenamiento o —a lo sumo— operaciones comerciales tipo aerotaxi-vuelo regional-conmuter-evacuaciones médicas entre pequeños aeródromos municipales o entre éstos y algún gran hub central. Y por qué se juzga poco realista cualquier propuesta de diseño que vaya más allá de estos límites.
La última vez que hablamos de aviación ligera eléctrica y convencional china en este blog fue con el Yuneec E430, hubiera sido el primer ultraligero eléctrico que se hubiera comercializado. Tras un pequeño boom de noticias de aviones eléctricos, estas se detuvieron hasta hace relativamente poco. Había quedado claro que quedaba mucho por desarrollar en tecnología de baterías y almacenamiento eléctrico.
En los últimos años hemos vuelto a tener otra explosión de noticias de aeronaves eléctricas, especialmente las dedicadas a la nueva movilidad aérea, y algunos modelos de aviones convencionales más o menos prometedores. Pero hasta ahora no habíamos vuelto a saber de ningún modelo chino que estuviera próximo a la certificación o comercialización.
Por eso nos ha sorprendido, y agradado, encontrar esta nota de prensa que presenta el RX4W, una aeronave cuatriplaza, más o menos equiparable en tamaño a una Cessna 172, y con un motor eléctrico de 140kW~185CV y una batería de 70 kWh, que le confiere una autonomía de hasta 1.5h.
La configuración es de ala alta en voladizo, con un ala de gran alargamiento, como viene siendo habitual en los diseños de avión eléctrico.
El certificado de tipo lo ha conseguido bajo la CCAR-23, que son las normas de aeronavegabilidad aplicables en china a aviones de categoría normal, utilitaria, acrobática y de transporte regional y que en China aplica a todos los aviones de hasta 19 asientos para pasajeros y un peso máximo certificado al despegue de 8618 kg. Normativa que, en principio, cabe de esperar que sea más restrictiva que la CS-VLA bajo la que se han certificado los últimos aviones eléctricos convencionales europeos.
Ha sido desarrollado por la Academia de Aviación General de la Universidad Aeroespacial de Shenyang, en Liaoning, que previamente había desarrollado otras aeronaves ligeras eléctricas, como el SAU BX1E.
El avión cuenta con una envergadura de 13,5 metros y una longitud de 8,4 metros, con un peso máximo al despegue de 1260 kg. Es impulsado por una batería de litio con una capacidad total de 70 kWh y un sistema de propulsión eléctrica capaz de alcanzar una potencia máxima de 140 kW.
Se espera que el RX4E sea bien recibido y tenga gran acogida en escuelas de vuelo, vuelos turísticos y fotografía aérea.
También están en marcha planes para desarrollar variantes con flotadores para agua y esquíes para nueve, así como propulsados por pila de hidrógeno.
El proceso de certificación de tipo, iniciado cuando la CAAC aceptó la solicitud de diseño el 11 de noviembre de 2019, ha llevado cinco años.
La aviación eléctrica y la híbrida vienen apareciendo con cierta frecuencia en estas páginas desde hace unos años. En este caso se trata de un prototipo fabricado por Airbus, Daher y Safran, sobre un avión turbohélice de Daher.
Cuenta con un turbohélice tradicional, más seis motores distribuidos a lo largo de la envergadura del ala y una batería de gran capacidad. La distribución de los motores en el ala recuerda a la que han usado en el Antonov 2, o en la Cub híbrida-eléctrica.
La instalación de hélices en el borde marginal nos hace sospechar que también desean ensayar a contrarrestar el torbellino de punta de ala, reduciendo así la resistencia aerodinámica. La nota de prensa del primer vuelo nos deja ver otra utilidad que van a ensayar en esta aeronave, que es el control de la misma mediante el empuje asimétrico de los motores. Esto puede favorecer un menor consumo, pues no sería necesario «pisar pedal» para contrarrestar el par del motor, manteniendo así el estabilizador y el timón de dirección sin deflectar, reduciendo la resistencia aerodinámica del conjunto durante el vuelo. Adicionalmente, si permitiera un control efectivo de la aeronave podría, a su vez, permitir desarrollar superficies de control más pequeñas, reduciendo a su vez aún más la resistencia aerodinámica.
Pero casi lo más importante que se ha aprendido no tiene que ver con el vuelo, sino con la certificación: Con 100 horas de vuelo, 50 vuelos, y todo el papeleo realizado para autorizarlos, no sólo se han obtenido datos de los ensayos en vuelo, que son los más vistosos, sino también puntos y procedimientos críticos para la certificación de este tipo de aeronaves.
EcoPulse, el demostrador de aeronaves con propulsión híbrida-eléctrica distribuida desarrollado conjuntamente por Daher, Safran y Airbus, ha concluido su campaña de pruebas de vuelo, proporcionando información crucial para cumplir con los objetivos de descarbonización del transporte aéreo para 2050. Este proyecto colaborativo, que es emblemático del sector aeroespacial francés, ha ofrecido una experiencia única en el diseño, certificación, producción y operación de aeronaves híbridas-eléctricas.
Pruebas de vuelo pioneras
EcoPulserealizó su primer vuelo de prueba híbrido-eléctrico el 29 de noviembre de 2023, desde el Aeropuerto de Tarbes–Lourdes–Pyrénées. Desde su vuelo inaugural, EcoPulse acumuló 100 horas de vuelo y realizó aproximadamente 50 vuelos de prueba con el sistema de propulsión híbrida distribuida, el último de los cuales tuvo lugar en julio de 2024. Estas pruebas permitieron demostrar niveles de potencia eléctrica a bordo sin precedentes para la propulsión eléctrica distribuida, con un voltaje de red de aproximadamente 800 voltios en corriente continua y una salida de potencia de 350 kilovatios.
Las pruebas de vuelo arrojaron datos significativos, incluyendo una evaluación objetiva de la madurez de las tecnologías de hibridación, una valoración del rendimiento al integrarlas en la aeronave y la identificación de limitaciones operativas.
Por ejemplo, las pruebas demostraron que el sincronizado de las ePropellers (motores eléctricos) puede reducir el ruido interior. Este sincronizado es un beneficio adicional del innovador ordenador de control de vuelo, diseñado principalmente para maniobrar la aeronave, sustituyendo las superficies de control tradicionales, ajustando la distribución de la potencia eléctrica entre las ePropellers.
Desafíos tecnológicos para el futuro
Más ampliamente, EcoPulse identificó los principales desafíos para la descarbonización de la aviación:
Arquitecturas eléctricas e híbridas-eléctricas;
Desarrollo de componentes clave: baterías (rendimiento y autonomía operativa) y sistemas de gestión de alta tensión (>400 V);
Asistencia al piloto con interfaces especializadas;
Lógica de certificación para la aeronavegabilidad;
Optimización del peso y del ruido;
Habilidades asociadas con la gestión de la complejidad.
La campaña de pruebas de vuelo sentó las bases para los documentos de cumplimiento necesarios para cumplir con los requisitos regulatorios para vuelos con propulsión híbrida-eléctrica, estableciendo las bases para certificar la seguridad de configuraciones innovadoras de aeronaves.
Sobre EcoPulse
EcoPulse es un proyecto colaborativo apoyado por CORAC (Consejo Francés de Investigación Aeronáutica Civil) y cofinanciado por la DGAC (Dirección General de Aviación Civil de Francia) a través de France Relance y NextGeneration EU.
Presentado en el Salón Aeronáutico de París de 2019, EcoPulse se basa en una plataforma de aeronave Daher TBM y está equipada con seis ePropellers (proporcionados por Safran) distribuidos a lo largo de sus alas. Su sistema de propulsión integra dos fuentes de energía: un turbogenerador (un generador eléctrico impulsado por una turbina de gas proporcionada por Safran) y un paquete de baterías de alta tensión (proporcionado por Airbus). En el corazón de esta arquitectura se encuentra una Unidad de Distribución y Rectificación de Potencia (PDRU), que protege la red de alta tensión y distribuye la energía eléctrica disponible, junto con los mazos de suministro de alta tensión (ambos proporcionados por Safran). La batería, diseñada por Airbus, tiene una capacidad de 800 voltios en corriente continua y puede entregar hasta 350 kilovatios de potencia.
El demostrador también se beneficia de la experiencia en integración aerodinámica y acústica del fabricante aeronáutico europeo, con el desarrollo del ordenador de control de vuelo de Airbus, que permite maniobrar la aeronave a través de las ePropellers, y el sincronizado para apoyar las futuras recomendaciones acústicas para aeronaves.
Con la conclusión del programa EcoPulse, Daher, Safran y Airbus reafirman su compromiso con la aviación sostenible. Este proyecto pionero establece las bases para los avances tecnológicos y regulatorios necesarios para abordar los desafíos medioambientales del transporte aéreo del futuro.