Primer vuelo del Elektra Trainer, avión ultraligero eléctrico

Elektra Trainer en su primer vuelo

El equipo de Elektra lleva más de diez años de experiencia acumulada en aviones eléctricos. La primera vez que aparecieron en nuestras páginas fue en 2010, y hacía mucho que les teníamos perdida la pista. Nos ha alegrado volver a leer de ellos, aunque parece que han rebajado su nivel de expectativas y han eliminado el requerimiento de avión solar para este entrenador.

La aeronave es muy aerodinámica, con un ala de gran alargamiento, lo que reduce la resistencia inducida, y con un tren retractil biciclo, con pequeñas ruedas auxiliares en punta de plano, al estilo de los veleros. Esta configuración de tren le permite reducir la resistencia y ahorrar peso.

Además Elektra trabajaba en hangares con techos solares para recargar sus aeronaves mientras están en el hangar, y en sistemas de diagnóstico avanzado, para mejorar el mantenimiento predictivo de las aeronaves.

Elektra One, el prototipo monoplaza, durante su primer vuelo en 2011

El Elektra Trainer hereda claramente sus líneas de su predecesor monoplaza, el Elektra ONE.

El Elektra Trainer, como su antecesor Elektra ONE tiene un tren biciclo retractil con ruedas auxiliares de punta de plano, típico de los veleros

Según su nota de prensa:

El 29 de junio de 2022, un avión ultraligero -según la normativa alemana- eléctrico biplaza Elektra Trainer de Elektra Solar GmbH (una empresa derivada del Instituto DLR de Robótica y Mecatrónica) despegó para su vuelo inaugural en el Aeropuerto Internacional de Memmingen.

El avión despegó entre jets de negocios y aviones comerciales en menos de 100 m en silencio y sin emisiones. Después de unos 20 minutos de vuelo, el piloto de pruebas Uwe Normann aterrizó, confirmando las extraordinarias características de la aeronave, que incluso superó las expectativas de los desarrolladores, llegando a velocidades ascensionales de más de 1500fpm (8 m/s), volando en vuelo de crucero bajo con solo unos 10 kW (13.4CV) de potencia, sin vibraciones en la cabina y con una estabilidad perfecta. Al aterrizaje la batería tenía un remanente de un 80% de carga.

Elektra Trainer fue diseñado como un avión ideal para escuelas y clubes de vuelo. Los costes operativos son inferiores a 60 EUR/hora, que -según la nota de prensa- es aproximadamente la mitad del coste de un avión ultraligero clásico. Esta diferencia de precio aumentará de un año a otro debido al rápido aumento de los costos del combustible.

Con esta aeronave, Elektra Solar GmbH pone en funcionamiento una infraestructura en la nube para el diagnóstico automático del sistema y el mantenimiento preventivo (Digital Aircraft Platform). Los datos de estado del sistema del vuelo se cargan en una nube y se analizan automáticamente con la ayuda de algoritmos de IA. Los errores y desviaciones del estado normal se comunican al propietario y/o a una empresa de mantenimiento. Gracias a esta tecnología, se incrementará la seguridad de funcionamiento y se reducirá aún más el esfuerzo de mantenimiento.

Después de este vuelo inaugural, comenzarán las pruebas de vuelo de certificación, con el objetivo de completar la certificación UL alemana para fines de este año.

  • Autonomía: 2,5 horas
  • Alcance: 300 km
  • Cabina lado a lado de 1,25 m de ancho
  • La burbuja de plexiglás es cómoda para pilotos de 2 m de altura
  • Tiempo de montaje desde el remolque de transporte hasta que esté listo para volar: unos 30 minutos
  • Estación de carga portátil de 12 kW
  • Hélice de paso variable
  • Tren de aterrizaje retráctil eléctrico
  • Plataforma digital de aeronaves para diagnóstico automático de sistemas y mantenimiento preventivo
  • Tasa de planeo superior a 25:1
Velocidades
Crucero 120 km/h
Pérdida con Flaps 82 km/h
Pérdida sin flaps 91 km/h
Máxima velocidad operacional 180 km/h
VNE 205 km/h
Velocidad ascensional 3 m/s (590fpm)
Distancias de despegue y aterrizaje
Despegue 200 m
Aterrizaje 200 m
Alcance y Autonomía
Autonomía máxima 2.5 hours
Alcance máximo 300 km
Motorización
motor eléctrico HPD-50D
Potencia máxima 50 kW | 67CV
Potencia máxima continua 40 kW | 54CV
Potencia de velocidad de crucero 12 kW | 16CV
Máxima capacidad de la batería 35 kWh
Pesos
MTOW 600 kg | 1322,77 lb
Peso en vacío pero con la máxima cantidad de baterías 400 kg | 881,85 lb
Dimensiones
Envergadura 14.5 m
Alargamiento 19
Diámetro de la hélice de paso variable 1.75 m
Ancho de la cabina 1,20 m
Otros
Mejor planeo 28:1
Nivel de ruido <50 dB
Certificación LTF-UL-2020 (normativa ULM alemana)

Elektra Solar

El primer avión de escuela eléctrico en España lo estrenan en Sabadell [video]

Pipistrel Velis con el logo del Aero Club Barcelona Sabadell, vía Fundació Parc Aeronautic de Catalunya

No es la primera vez que Pipistrel visita este blog con sus aeronaves eléctricas. Y ahora vuelve de mano del Aero Club Barcelona-Sabadell y de Barcelona Flight School, porque lo han presentado hoy en el Museo Aeronáutico de Cataluña su nueva aeronave: el Pipistrel Velis, el primer avión de escuela eléctrico en España.

El Velis es el último desarrollo eléctrico de Pipistel, comprada recientemente por Textron. Ha sido escogido también tanto por la RAF como su primer entrenador eléctrico como la fuerza aérea danesa, y están realizand pruebas con él.

Pipistrel Velis despegando de Sabadell

La aeronave que volará con el ACBS, F-HGBE, pertenece a Green Aero Invest, una compañía especializada en el leasing de material deportivo, como nos hicieron saber a través de Twitter.

SAF (Sustainable Aviation Fuel) SC (Sin Complejos) o ¿qué es el SAF?

Ciclo abierto de los combustibles fósiles vs ciclo cerrado de los SAF.
Fuente: Guía para principiantes a los biocombustibles

¿Qué son los SAF – Sustainable Aviation Fuels?

En los últimos tiempos se habla de que el futuro verde de la aviación pasa bien por los SAF bien por el hidrógeno. La electricidad no la mencionamos, puesto que ya hemos discutido muchas veces que es más bien apta sólo para algunas aplicaciones muy concretas. Pero, ¿que es el Sustainable Aviation Fuel?

Tras esas siglas se esconden los ya conocidos biocombustibles más otros combustibles sintéticos de otras procedencias, cuyos procesos de obtención han sido certificados como seguros.

Así pues, si los SAF no dejan de ser hidrocarburos, y por tanto su quema no deja de producir dióxido de carbono y agua, ¿cuáles son sus ventajas? La principal es la diferencia de ciclo de producción respecto a los combustibles fósiles. En un combustible fósil, el ciclo es abierto. Se extrae, se transporta, se procesa, se distribuye, se quema, y se libera el dióxido de carbono y otros contaminantes. Sin embargo, el ciclo del SAF sería cerrado, puesto que el dióxido de carbono emitido sería vuelto a absorver por las plantas de las que deriva el biocombustible. Llegados a este punto, la pregunta obligatoria es, ¿Qué rendimiento tiene ese ciclo?

¿Y los problemas con los aromáticos de los biocombustibles?

Hasta ahora, uno de los problemas conocidos para usar los biocombustibles es que debían ir mezclados con keroseno normal y corriente. Esto se debía a la falta de hidrocarburos aromáticos en los biocombustibles, ahora SAF.

Por ello los vuelos que se habían realizado hasta el momento eran con mezcla de combustible fósil y combustible sostenible. Sin embargo, dentro de los procesos certificados para la obtención de SAF hay ahora algunos que producen un combustible que sí incluye aeromáticos, lo que ha hecho posible que durante este año se hayan anunciado varios vuelos con 100% SAF, incluso para todos los motores.

Nota aclaratoria: por seguridad las pruebas no se hacen nunca «a lo bruto», y primero se hace alimentando un motor con el combustible nuevo y el otro con el combustible tradicional, y en otras fases de los ensayos se reemplaza el combustible de ambos motores con el combustible ensayado.

Tabla con los procesos aprobados para la producción de SAF

Los procesos que proporcionan combustibles con mayor cantidad de aeromáticos son los FT-SPK y SPK/A, cuyas fuentes para producir el combustible son carbón, gas natural (algo así como los combustibles sintéticos usados por los alemanes ya en la Segunda Guerra Mundial) y biomasa. Sin embargo, 2 de las tres fuentes de este combustible son hidrocarburos fósiles, lo que haría reducirse el rendimiento del ciclo del SAF que mencionábamos antes.

Es posible, sin embargo, que gracias a la mezcla de este tipo de SAF con otros combustibles sostenibles sea lo que ha permitido que se realicen vuelos con 100% SAF, en lugar de con mezcla.

Fuentes para la obtención de los biocombustibles

Ya la tabla anterior nos deja entrever que hay varias fuentes posibles como materia prima y cuáles son. Las desgranamos.

Azúcar/Almidón

En éste el azúcar y el almidón se obtienen de plantas de consumo humano, lo que entra en conflicto directo con la obtención de alimento. De estas materias primas se derivan principalmente los bioetanoles, en los que Estados Unidosy Brasil son líderes hoy día. La brasileña Embraer incluso tiene certificado su Ipanema, un avión agrícola, para ser alimentado por este bioetanol.

Aceite

Se han intentado utilizar distintos aceites para la obtención de biocombustibles. Hace unos años la jatropha y la camelina salían en este blog, como los biocombustibles, con cierta frecuencia. Sin embargo su transformación no es rentable, asi que no pasaron de ensayos. Las algas, que también eran una fuente prometedora de biocombustibles, son difíciles de controlar y cultivar, y sus resultados económicos no son buenos aún. Las alófitas han dado algunos mejores resultados, aún sólo experimentales.

Otro de los cultivos, que no compite con la alimentación, es un tipo de tabaco modificado, en desarrollo en Sudáfrica como Proyecto Solaris.

Más fuentes de aceite, que no compiten con la alimentación, es el reciclaje de aceites de cocinar usados y los residuos de las grasas animales provenientes de la industria alimentaria. Se estima que anualmente se producen en el mundo 25 millones de toneladas de aceite usado de cocina y 5 millones de toneladas de grasas animales, lo que, en su conjunto, equivale al 10% de la producción mundial de bombustibles de aviación. El mayor problema de esta fuente es el coste de su recogida.

Biomasa lignocelulósica

La biomasa lignocelulósica tiene una gran tradición como combustible: siempre hemos quemado madera. Y desde mediados del siglo XX se intenta utilizar como fuente de combustible, convirtiéndola en etanol.

Esta materia prima tiene el potencial de ser utilizada para la producción de SAF a través de procesos avanzados. Se puede obtener directamente de la silvicultura de rotación corta (por ejemplo, adoptando especies de eucalipto, álamo, sauce y otras) o de residuos leñosos o subproductos de las industrias de procesamiento de la madera.

Además, se han identificado otras fuentes de material lignocelulósico como las gramíneas perennes. En general, estas biomasas se caracterizan por su rendimiento relativamente alto, bajos costos y potencial para crecer en tierras marginales.

A su vez, los residuos agrícolas se refieren a la biomasa del cultivo como hojas, paja, bagazo, tallos y cascarillas. Sus propiedades y composición son diversas, pero típicamente están constituidas por lignocelulosa. A pesar de su uso ocasional en la agricultura, se ha considerado su potencial para producir combustibles. Del 10 al 25 por ciento de los residuos podrían ser utilizados de forma sostenible sin competir con los usos tradicionales. Esta cantidad proporcionaría del 4 al 10 por ciento de la demanda mundial de combustible para el transporte en 2030 si se utilizara para producir etanol o diésel, como se supone en el informe de OACI que usamos como fuente.

Finalmente, otra de las fuentes posibles de lignocelulosa es obtenerla de los residuos sólidos urbanos, durante su procesado para reciclaje.

Procedimientos de transformación

Distintos procesos y fuentes para la obtención de SAF

Básicamente hay tres tipos de procesos: conversión de grasas, los bioquímicos y los termoquímicos.

El primero de ellos es el proceso mejor conocido hasta ahora, y el que permite la obtención de SAF a escala industrial. Es similar al refinado del petróleo.

Dentro de los segundos, sólo hay uno aprobado para producir combustible de aviación certificado: la gasificación de la biomasa sólida a temperaturas elevadas para obtener una mezcla de gases, mayoritariamente monóxido de carbono e hidrógeno, que se denomina “gas de síntesis” o “syngas”. Después de la purificación, el gas de síntesis se sintetiza en una mezcla de líquidos y gases que contienen cadenas de hidrocarburos de diferentes tamaños, en una reacción catalítica conocida como el proceso de Fischer-Tropsch. Dependiendo de la temperatura del proceso, los catalizadores utilizados y los pasos posteriores al refinado (por ejemplo, cuando se separan los componentes de la mezcla), es posible obtener productos con características similares al combustible de aviación.

Para terminar, los procesos bioquímicos. Dos rutas están incluidas en la categoría de conversión bioquímica. En el proceso alcohol-to-jet (ATJ), SAF se produce a partir de moléculas de alcohol, como etanol o isobutanol, hechas de plantas que contienen azúcar/almidón, materiales lignocelulósicos o procesos innovadores. ATJ se compone de procesos como deshidratación (eliminación de agua), oligomerización (conversión de moléculas pequeñas en más complejos) y la hidrogenación (adición de hidrógeno). El proceso HFS-SIP (Iso-Parafinas Sintéticas producidas a partir de ésteres y ácidos grasos hidroprocesados, antes conocido como DSHC: Fermentación directa de azúcares a hidrocarburos) emplea microorganismos modificados genéticamente para convertir el azúcar en hidrocarburos o lípidos. En uno de estos casos, estos microorganismos, en lugar de producir etanol, producen sustancias como el farneseno (isoparafina sintética SIP) que puede convertirse en un producto de tan buenas características como el combustible de aviación. En este caso específico, los bajos rendimientos son restricción importante.

Conclusiones

Emisiones de CO2 por industria, fuente

El uso de los combustibles sostenibles para la aviación puede reducir las emisiones de esta industria que, actualmente, solo contribuye con un 2% de emisiones de CO2 al total.

Esta reducción dependerá del rendimiento del ciclo cerrado del SAF. Lo ideal es que fuera igual a 1.

Sin embargo la introducción de combustibles sintéticos provenientes de combustibles fósiles como el carbon o el gas natural ya hace que se reduzca ese rendimiento.

Emisiones de dióxido de carbono según energía producida por biocombustible, teniendo en cuenta y sin tener las consideraciones de cambio de uso de la tierra (LUC – Land Use Change)

Otros factor muy importante que puede influir en ese rendimiento es la fuente de energía utilizada para la transformación de las materias primas en combustibles, siendo imprescindible las energías renovables, sin olvidar la importancia de la energía nuclear como respaldo. Si la energía procediera de la quema de otros combustibles, el rendimiento del ciclo sería aún mucho menor.

Tampoco podemos perder en cuenta los distintos impactos que puede tener la producción de los combustibles sostenibles para la aviación, como el cambio de uso del suelo, impacto en el precio de los alimentos…

Repercusiones socio económicas del SAF

Según el informe de la OACI, con la previsión de uso del suelo tanto para vivienda como alimentación, sin olvidar las zonas no cultivables y las protegidas por ley, sería posible la transición a la producción de SAF sin riesgos para la producción de alimentos.

Uso del suelo, actual y futuro

La ventaja principal del SAF es que no necesita modificar las aeronaves ni los motores, y por tanto tampoco la cadena logística de suministro, mantenimiento, etc, sufriría un gran impacto. Y además de buscar que sea sostenible y renovable, se puede buscar la independencia de los proveedores habituales de combustibles fósiles, deslocalizando su producción. Por tanto, el SAF es, a corto plazo, la mejor opción para reemplazar los combustibles fósiles, siempre y cuando se logre que su impacto socioeconómico sea positivo, y el rendimiento del ciclo de emisión de contaminantes sea lo más próximo a uno.

Sin embargo, a largo plazo parece que un cambio al hidrógeno es la mejor solución.

Sea como fuere, parece que los objetivos para 2035 pueden ser muy ambiciosos, y 2050 podrían ser más realistas.

Ciclo del SAF según Airbus

Fuente: ICAO’s SAF guide (pdf)

Air Nostrum firma con Hybrid Air Vehicles para ser la aerolínea lanzadora del dirigible híbrido Airlander 10

Un dirigible de nueva generación con librea de Air Nostrum

Nota de prensa

  • El acuerdo se ha firmado entre representantes del grupo y de la empresa británica Hybrid Air Vehicles (HAV)
  • El grupo firma un convenio para utilizar el innovador dirigible cuando este obtenga su certificación
  • HAV espera que el primer Airlander 10 fruto de este pacto pueda estar operativo en 2026

La iniciativa se inscribe en la decidida apuesta del grupo por aplicar en los próximos años fórmulas de movilidad medioambientalmente sostenibles ya que el Airlander reduce en un 90% las emisiones de carbono

Los socios de Air Nostrum se vinculan al proyecto de movilidad sostenible Airlander 10 de la empresa británica Hybrid Air Vehicles (HAV) en el marco de una innovadora asociación para impulsar las soluciones de movilidad sostenible de la aerolínea. Ambas partes han firmado un acuerdo para que el grupo sea el cliente lanzador del Airlander 10, un dirigible ecológico y versátil.

Con esta iniciativa, los socios del holding de movilidad valenciano refuerzan su posición como grupo innovador y a la vanguardia hacia un transporte sostenible. Air Nostrum está explorando diferentes soluciones que buscan mejorar la protección del medio ambiente, como es este caso con el plan de introducir el Airlander 10 en su flota.

Este revolucionario medio de transporte es altamente sostenible gracias a que su consumo de combustible es muy inferior al de otros medios alternativos, lo que supone una reducción de emisiones de CO2 de hasta el 90% en el proyecto inicial y hasta alcanzar las emisiones cero en 2030. Está alineado con los Objetivos de Desarrollo Sostenible (ODS) de la ONU en materia de producción, consumo responsable y de acción por el clima.

La intención plasmada en el acuerdo por HAV es que la primera aeronave pueda estar operativa, después de haber obtenido su certificación, en 2026, para luego seguir entregando nuevas unidades de una forma escalonada durante los siguientes cinco años. Los socios de Air Nostrum plantean una operación con este medio de transporte mediante un leasing operativo de hasta 10 aeronaves.

La versatilidad y sostenibilidad son los grandes activos que tiene la aeronave de la empresa inglesa HAV. Su uso se puede adaptar a las necesidades puntuales de cada destino, ya que el Airlander 10 podrá posarse en cualquier superficie razonablemente plana, tanto en tierra como en agua.

Además, dada su capacidad de despegue y aterrizaje en espacios reducidos, el Airlander 10 puede ser la alternativa de movilidad perfecta para el transporte aéreo en ciudades que no tienen instalaciones aeroportuarias y en islas. Los socios de Air Nostrum se esfuerzan actualmente por mejorar la movilidad de los pasajeros, ya sea mediante aviones convencionales, trenes o con nuevas y revolucionarias soluciones aéreas.

Carlos Bertomeu, presidente de Air Nostrum, explica: “Exploramos todas las vías que se nos presentan para reducir la huella de carbono. Es algo que venimos haciendo desde hace muchos años. El Airlander 10 bajará drásticamente las emisiones y por eso hemos alcanzado este acuerdo con HAV. La sostenibilidad, por suerte para todos, ya es un hecho irrenunciable en el día a día de la aviación comercial y acuerdos como este son una forma efectiva de alcanzar los objetivos de descarbonización previstos en la iniciativa legislativa ‘Fit for 55’”.

Fuente: Nota de Prensa de Air Nostrum y Nota de prensa de HAV

Cabina del dirigible

Comentarios

No es la primera vez que hablamos en este blog o en la web hermana Noticias Aero de la vuelta de los dirgibles. Desde aquel lejano ISIS, que pretendía ser un dirigible-pseudosatélite militar, a las apuestas para recuperar los dirigibles para vuelos de placer sobre San Francisco, o la más reciente noticia sobre los dirigibles con estructura de fibra de carbono del cofundador de Google.

Sin embargo todas estas aeronaves más ligeras que el aire tienen el problema de su flotabilidad y manejo en tierra. De ahí que nacieran las aeronaves híbridas, en las que un 80% de la sustentación procede del helio y el 20% restante de la forma del fuselaje sustentador de la aeronave, como explicamos en nuestra extensa entrada sobre el LEMV o en la del Bella 01, una aeronave rusade los años 80. Por ello no vamos a redundar más en las ventajas de este diseño sobre el del dirigible tradicional, dejando al lector los dos enlaces para que disfrute de ellos.

Este tipo de aeronave híbrida es el que anuncia AirNostrum que integraría en sus rutas regionales: un dirigible híbrido, en el que parte de la sustentación procede del gas y parte del fuselaje. Puede operar desde pistas cortas y no preparadas, no es muy demandante en cuanto a consumo de energía para volar, y la instalación exterior de los motores hace que sea relativamente sencillo actualizar su tecnología entre motores de explosión, hidrógeno o eléctricos. La velocidad de crucero es de unos 130km/h.

La tecnología no es nueva y lleva ya casi una década entre nosotros, aunque su desarrollo se vio frenado bruscamente tras su accidente en 2017. De hecho se han presentado numerosos vídeos como aeronave ejecutiva, hotel volante, o aparato de carga aérea. Hasta ahora todas iniciativas sin éxito.

En España, y en general, podría ser una alternativa interesante para cubrir rutas en las que no tiene sentido el desarrollo de vías férreas, como hablábamos con Ivan Rivera al analizar la hoja de ruta neerlandesa para la aviación eléctrica, así como entre islas, o para dar servicio a las ciudades autónomas de Ceuta y Melilla. Así que esperamos que, ciertamente, este proyecto sea el complemento ideal a nuestras líneas férreas y se potencie, al menos frente a la movilidad aérea urbana, en la que creemos menos, y algunas grandes agencias estadounidenses nos dan la razón.

Movilidad Aérea Urbana: ¿Y si certificar los eVTOL no fuera tan sencillo?

Y esta vez no lo decimos nosotros, sino la US Government accountability office, que ha realizado un informe de 41 páginas, entrevistándose con los distintos actores del sector, desde las empresas que están diseñando e intentando certificar los vehículos de movilidad aérea urbana a ingenieros, mecánicos, pilotos y autoridades certificadoras.

Intentamos resumirlo aquí debajo.

Las empresas que desarrollan las aeronaves eléctricas de aterrizaje y despegue vertical quieren transformar el mercado de la aviación. Muchos de estos aviones se diseñan para ser altamente automatizados, e incluso no tripulados.

Además, se pretende que estas aeronaves sean más baratas y silenciosas de operar que los aviones o helicópteros tradicionales. Y que puedan establecerse con ellas nuevos servicios, conocidos colectivamente como Movilidad Aérea Avanzada, que conectarían áreas urbanas y rurales, acelerarían la entrega de mercancías y proporcionarían transporte médico.

Continuar leyendo «Movilidad Aérea Urbana: ¿Y si certificar los eVTOL no fuera tan sencillo?»