MB-E1: el primer avión eléctrico tripulado voló en 1973

Militky-Brditschka Elektroflieger No. 1, primer avión eléctrico tripulado

Cada vez se habla más de la aviación eléctrica y de la aviación de hidrógeno. Y en Sandglass nos gusta hablar del futuro… y bucear en el pasado buscando a los pioneros que se atrevieron a intentarlo cuando se podía considerar casi imposible. E igual que encontramos al pionero del hidrógeno, hemos encontrado al pionero de los eléctricos.

Según el Libro Guinness de los Récords, el primer vuelo de un avión eléctrico tripulado se produjo el 21 de octubre de 1973, en Wels, Austria. El avión era un motovelero Brditschka HB-3 con un motor eléctrico, rebautizado como MB-E1 (Militky-Brditschka Elektroflieger nº1), matriculado como OE-9023.

Fred Militky era un reputado aeromodelista, muy conocido, diseñó a finales de los años 50 el Graupner Silentius, el primer modelo de vuelo libre con motor eléctrico. Y en 1973 presentó el Graupner Hi Fly, el primer avión de radio control eléctrico.

Heinrich Brditschka tenía una compañía de aviones de verdad. Una de sus aeronaves más conocidas es, posiblemente, el moto velero en el que se basó el MB-E1.

En 1973 se propusieron probar con un demostrador tecnológico que era posible el vuelo con aviones tripulados eléctricos. Para ello escogieron una aeronave a la que cambiar la motorización. Uno de los primeros problemas que se encontraron fue, como hoy día, el gran peso de las baterías. Un problema aún más grave que hoy día, puesto que las utilizadas eran de Ni-Cd. Precisamente por ese límite de peso no es de extrañar que escogieran como aeronave a motorizar un motovelero, al fin y al cabo son aeronaves que funcionan con motores poco potentes y por tanto necesitan menos cantidad de baterías para funcionar más tiempo. De hecho el HB-3 tenía un pequeño motor de menos de 50CV. ¡Y en caso de quedarse sin carga siempre podían volar a vela!.

El HB-3 había sido diseñado en 1970 por Brditschka y Fritz Raab. Motorizado con un Rotax 642 de 41HP (30.6kW), tenía una envergadura de 12 metros y una longitud de 7. El peso en vacío era de 255kg y el máximo al despegue de 372kg. Tenía una configuración poco habitual, con hélice impulsora montada detrás de la cabina, pero en lugar de en la típica posición de pilón sobre elevado, era el fuselaje el que recibía un gran aligeramiento para hacerla hueco.

Militky reemplazó el motor de dos tiempos original del HB-3 por un motor Bosch KM77 de 8kw, alimentado por baterías de Ni-Cd de Varta, que le daban una autonomía máxima de 15 minutos.

El primer vuelo se realizó el 21 de octubre de 1973, y duró 9 minutos, alcanzando una altitud máxima de unos 300m (1000ft) sobre el suelo. Muchos vuelos de hasta 15 minutos de duración siguieron a este, demostrando que era posible diseñar y fabricar aviones eléctricos.

En 2017 se restauró, y ahora puede verse en el museo de Graz-Thalerhof.

Especificaciones:

  • Modelo de origen: HB-3A
  • Envergadura: 12 m
  • Longitud: 7 m
  • Superficie alar: 14.22 m2
  • Alargamiento: 10.11
  • MTOW: 440 kg
  • Carga alar: 31 kg/m2
  • Motor: Bosch KM77 de serie
  • Voltaje: 80 V
  • Potencia: 8000 Watts
  • Velocidad de giro: 2400 rpm
  • Peso del motor: 33 kg
  • Batería: VARTA con placas sinterizadas (120 cells)

Con el logro del proyecto MB-E1 ha sido posible demostrar que una aeronave más pesada que el aire puede volar con energía eléctrica. Depende de los fabricantes de baterías que sean capaces de producir mejores baterías, más ligeras, y hacer posible el acceso al vuelo eléctrico a un público más amplio, al menos en el campo del vuelo amateur

Fred Militky, después del primer vuelo del MB-E1

Fuentes

Kepplair Evolution propone una versión apagafuegos del A-330

Visión artística de un A-330 descargando agua con retardante

En el mundo entero, y en Europa concretamente, los incendios forestales son cada vez más frecuentes y violentos. El cambio climático hace que los eventos meteorológicos sean cada vez más extremos, sean las lluvias, sean las tormentas, los aumentos de temperatura y las sequías.

Con más calor, menos humedad, un terreno con menos agua y más seco, y tormentas de viento más intensas, tenemos unas condiciones de contorno que favorecen en extremo los grandes fuegos. Y la colaboración europea se ha visto indispensable para poder combatirlos. Precisamente por ello en 2013 la Unión Europea publicó la decisión nº 1313, en la que se define el marco europeo para la colaboración en protección civil.

Y por el aumento de los incendios, más el marco de colaboración europeo así como el incremento de inversiones en proyectos ecológicos e inspirados por los grandes aviones cisternas estadounidenses (como el B-747 o el DC-10), nació esta idea, de la colaboración de David Joubert, de Kepplair Evolution, piloto de aerolínea, y de Dominique Legendre, profesor del Instituto de Mecánica de Fluidos de Tolouse.

Estudiando las publicaciones del Servicio Forestal Estadounidense acerca de los patrones de descarga en función de las distintas aeronaves, altitudes de vuelo y tipos de dispensadores de agua o agua más retardante, Dominique Legendre y otros autores determinaron el modelo que permite relacionar la velocidad de vuelo del avión, el tamaño de las compuertas de descarga, y el nivel de cobertura en el suelo. A partir de este modelo han desarrollado NASCA, un software propio para predecir la distribución, y por tanto la eficacia, de las descargas.

Modelo de distribución de las descargas en el suelo, según el Servicio Forestal Estadounidense
Modelo matemático que predice la distribución anterior

Y basado en ello desarrollaron un sistema semi-presurizado, la descarga se produce en parte gracias a la gravedad, en parte gracias a la presión del sistema, del que han construido un prototipo a escala 1:3 para probar el concepto.

Sistema KIOS

Este sistema ha sido bautizado como KIOS, y ha sido pensado para que su instalación sea modular, permitiendo que el avión no sea transformado tan solo en avión apagafuegos, sino también en carguero, avión hospital… Entendemos que, debido a la modularidad que pretenden para la aeronave, el sistema se basa en un sistema paletizado basado en los estándares de carga aérea, lo que permite que las modificaciones estructurales a la aeronave sean las menores posibles, además de estar ya validadas por otras conversiones a avión carguero. Las cisternas del sistema KIOS irían distribuidas lo más próximas posibles al centro de gravedad, mientras el sistema de descarga se situaría al final del carenado ventral, conocido como belly fairing. Esta disposición se debe a la dificultad de posicionar las compuertas de descarga directamente debajo de los depósitos, por ser donde se sitúa el tren de aterrizaje principal, y otros sistemas.

Esquema del sistema KIOS instalado en el A330, con los tanques distribuidos entorno al centro de gravedad

La capacidad total de agua sería de unos 35000 (según su web)-40000 (según entrevista en Le Figaro) litros, casi seis veces más que la capacidad de carga de los CL-215T/415. La descarga de agua se produciría con un caudal constante, y se podría elegir entre niveles de cobertura en el suelo que variarían entre 0.4 y 3.2 l/m2. La recarga, obviamente, sería siempre en tierra, en algún aeropuerto, y Keppler Evolution dice que se haría en menos de 15 minutos. La falta de capacidad de carga in situ y el gran tamaño de la aeronave hacen que ésta dependa de la existencia de grandes aeropuertos desde los que operar, lo que la aleja del incendio, pero a cambio cubre mayores superficies y tiene una mayor velocidad de crucero, lo que, en teoría, le permitiría llegar al incendio en tiempos equiparables a los de las aeronaves anfibias que cargan en las cercanías del fuego.

Según la compañía, esta aeronave no pretende reemplazar las flotas nacionales de aeronaves apagafuegos, sino complementarlas, cubriendo en europa el nicho de aviones cisterna de grandes dimensiones, y creando una flota europea que se desplazara allí donde fuera necesario.

Las otras variantes propuestas son pasajeros, carguero, combi, y medevac.

La alta velocidad de crucero permitiría a la aeronave desplazarse de forma rápida a cualquiera de los países europeos que necesitara la ayuda, y su capacidad interna le permitiría desplazar además todo el equipo necesario. Además su modularidad le permitiría ser configurado para evacuaciones de personas, anti incendios, hospital volante… y atender así con flexibilidad a la emergencia que se estuviera produciendo.

Según David Joubert, el precio de compra de un A-330 de segunda mano supondría de 3 a 8 millones de euros, y otros 15 o 20 convertirlo en apagafuegos, mientras que cada Dash-8 comprado recientemente en Francia ha costado 66 millones cada uno. La Direction Générale de la Sécurité Civile et de la Gestion des Crises ha sido contactada por Le Figaro y ha declarado que las aeronaves como los anfibios Canadair o los Dash 8 se adecuan mejor a la orografía europea, y que los grandes aviones cisternas son mas adecuados para las grandes extensiones de terreno, como en los incendios forestales de Florida. Lo cierto es que el 747 de Evergreen no tuvo mucho éxito en los incendios de la sierra de Poyatos, Cuenca, de 2009.

Otras de las ventajas económicas que publica la compañía en su web tiene que ver con el entrenamiento de los pilotos. Los pilotos de los aviones anfibios no solo tienen que entrenar constantemente por la baja cota (~40m sobre el suelo) a la que vuelan durante los incendios, sino también para practicar la carga de agua en superficies de agua confinadas, o en el mar. El A-330 operaría a cotas más altas (+100m sobre el suelo), y al recargar en tierra, evita la necesidad de este entrenamiento constante durante todo el año.

Kepplair Evolution dice que, contando con la financiación adecuada, el primer avión convertido podría estar volando en 2024.

La idea original era modificar un Airbus A-310, sin embargo, dada la antigüedad de la flota y la bajada de precios de los A-330 de segunda mano por la crisis generada por la covid-19 en la aviación, así como la valía que ha demostrado el MRTT, ha supuesto la evolución del proyecto hacia este otro avión, más moderno y económico de operar.

Fuentes:

Airbus desvela un concepto hexamotor. Reflexiones sobre los nuevos polimotores

Dentro de los numerosos estudios que hay para encontrar una solución para los aviones del futuro, ésta es la última de Airbus, dentro de sus iniciativas ZEROe: un avión con una estructura de fuselaje convencional, ala alta, y seis góndolas autocontenidas: motor eléctrico, movido por una pila de hidrógeno, más el depósito para este gas, el equipo auxiliar, el sistema de refrigeración, y el paquete electrónico que ayuda a controlar y regular todo.

Recurre por tanto a una de las configuraciones que discutimos cuando analizamos el hidrógeno como combustible, con los depósitos cilíndricos alargados bajo el ala, pero aprovechando esta góndola para colocar el motor, dándole una apariencia más convencional que otros que hemos visto en los que motores y depósitos están en góndolas separadas.

La solución de la pila de hidrógeno no se ha escalado a gran tamaño, y con esta propuesta Airbus pretende distribuir la tecnología de pila de combustible que ya existe y escalarlo mediante la vieja táctica de poner más motores. La instalación en góndolas permite escalar el sistema agregando o eliminando góndolas, y además facilita el mantenimiento o incluso el repostaje.

Fuente: Airbus

Propulsión distribuida

La configuración adoptada por Airbus es la que hemos venido viendo en otros proyectos en las últimas entradas, como en las propuestas de CleanSky, la de Embraer, o el británico HERA, la llamada Propulsión distribuida.

Antes de continuar con este concepto, vamos a explicar otro. La fuerza con la que se mueve un reactor hacia adelante se llama empuje. El empuje se puede expresar como el gasto másico de aire que pasa por el motor multiplicado por la velocidad del aire. El rendimiento del motor está relacionado con el incremetno de velocidad que se le da al aire. Cuanto mayor es el incremento, menor rendimiento, así para aumentar el empuje de forma eficiente lo único que queda es aumentar el gasto másico que atraviesa el motor. Por eso los motores de los aviones tiene cada vez diámetros más grandes, con carenados enormes, o incluso sin carenados (concepto Open rotor o Propfan).

La propulsión distribuida busca precisamente esto. Muchos motores eléctricos moviendo muchas hélices o muchos ventiladores, para lograr el mismo efecto que en los actuales motores con un motor enorme. ¿por qué no mover ahora con un motor de combustión muchos ventiladores o hélices? Porque las transmisiones mecánicas tienen muchas pérdidas. Pero con el motor eléctrico queda solucionado.

Así pues parece que después de haber vivido una reducción paulatina de la cantidad de motores, hasta tal punto que hemos vivido la muerte de los grandes cuatrimotores, parece que el futuro pasa por la vuelta a los aviones con muchos motores.

Sin embargo, si se ha pasado de cuatro motores a tan solo dos por motivos de economía de mantenimiento, ¿por qué multiplicar ahora el número de motores?

En el caso de los motores de hélices instalados para soplar sobre las alas se nos ocurren varios motivos.

Este tipo de instalación permite soplar la capa límite, energizándola, haciendo que permanezca adherida más tiempo, y de este modo asegurando despegues más cortos y mayores ángulos de ataque. Esto favorece que la pista sea más corta, y un ángulo de subida más pronunciado, que minimiza el impacto sonoro sobre las poblaciones.

Otra de las ventajas que se tiene al utilizar hélices de pequeño diámetro es que los fenómenos de compresibilidad de punta de pala asociados con las altas velocidades de giro y altos cruceros tardan más en aparecer.

En el caso de los ventiladores entubados una de las ventajas es, como con las hélices, un funcionamiento más silencioso, y por su instalación es posible que hagan llegar menos ruido a al cabina, teniendo en cuenta que normalmente aparecen instalados te dal manera que la propia ala podría apantallar el ruido en cabina.

A la pregunta de por qué reducir el número de motores por ahorrar en mantenimiento y ahora volver a aumentarlos, se nos ocurren dos posibles respuestas:

  • En general la fiabilidad de los motores eléctricos es altísima, y el número de averías escaso, así pues es posible que el coste del mantenimiento pase a un plano secundario frente a las ventajas
  • O bien, la pista nos la da una de las frases que aparece en la nota de prensa de Airbus, es una forma rápida de escalar estas soluciones a aeronaves de mayor tamaño, demostradores tecnológicos de momento, sin la necesidad de desarrollar grandes motores eléctricos y que a su vez pesen poco para reemplazar a los actuales.
  • Además al ser motores de pequeño tamaño es más sencillo producirlos, así que tal vez el coste de bajo mantenimiento de motor eléctrico más coste ahorrado por producir motores de tamaño pequeño, que necesitan instalaciones más sencillas y menos utillaje y equipo de soporte, sea suficiente como para terminar resultando más económico que grandes motores.

Clean Sky: Presentación de nuevas aeronaves y motores

Clean Sky es un progrma europeo, público-privado, que persigue mejorar las aeronaves, sus motores y su entorno, para reducir la contaminación y consumo que producen. De éste programa han salido proyectos como el BLADE, que consistía en sustituir el segmento externo del ala de un A-340 por un ala laminar de flujo natural con nuevas tecnologías para reducir el consumo.

Clean Sky acaba de presentar su feria virtual, en la que se presenta el propio programa, como distintos proyectos. Ya que la covid-19 nos tiene en casa y sin grandes eventos ni aglomeraciones, se ha presentado un hangar virtual, que se visitable desde el navegador de internet y también con gafas de realidad virtual para ver en 3D, en el que se pueden visitar distintos stands, como si una feria real se tratara, y contemplar los distintos proyectos. En cada proyecto se puede leer un breve resumen sobre él, abrir un modelo CAD en 3 dimensiones y rotarlo o hacer zoom para poder contemplarlo en detalle, y ver distintos vídeos en los que se presentan los proyectos.

De estos proyectos cabe destacar:

RACER, la evolución natural del Airbus X3. Un helicóptero compuesto.

NGCTR, una aeronave de despegue y aterrizaje vertical de rotores basculantes, desarrollada por Leonardo y heredera del Augusta Bell 609.

Hybrid Electric Distributed Propulsion Turbo Prop 50 es una aeronave que recuerda a un ATR, eso sí, con propulsión híbrida, y con el ala lleno de motores eléctricos. La propulsión distribuida permite hélices de menor tamaño, y por tanto más silenciosas, y un soplado de la capa límite, que permite mayores velocidades de pérdida, y por tanto aeronaves más STOL.

DRAGON, otra aeronave de propulsión distribuida. En este caso recuerda a un venerable DC-9, con los motores generadores de electricidad en cola, y los motores eléctricos en el intradós del ala, con lo que no se consigue el soplado de la capa límite pero seguramente se logre apantallar parte de su ruido para que no llegue a cabina.

Además de todas estas aeronaves podemos encontrar este proyecto de Safran, para estudiar la resistencia de la integración motor-aeronave y para reducirla.

El Ultrafan, posiblemente el motor más convencional, una evolución de los actuales, con más eficiencia.

Una presentación acerca de la propulsión sostenible del futuro

Y un sistema para controlar la capa límite y lograr controlar su flujo

No dudéis en visitar la Feria virtual para tener más detalles acerca de la gestión del Clean Sky o de su dirección, organización…

Avions Mauboussin vuelve con dos aviones «verdes»

Avions Mauboussin era una compañía francesa de los años 30, que producía aviones ligeros y de carreras. La historia comienza en 1928, con el Peyret-Mauboussin PM X, un monoplaza ligero con el que se rompieron unos cuantos records. Durante los años 30 produce varios aviones ligeros, de ala baja, del estilo de los que se llevaban en aquella época. En el 36 se une a Fouga. En la Segunda Guerra Mundial casi desaparece, aunque hace algunos planeadores junto con Fouga. Y en los 50 desarrolla el famoso Fouga Magister. Se retiró en 1967, y ahora su nombre se vuelve a asociar a la aviación con los dos conceptos que podemos ver arriba.

El primero se trata de una STOL (de despegue y aterrizaje cortos) aeronave de pasajeros, de cuatro motores con una disposición poco habitual, en punta de plano, dos empujando y dos tirando. Los depósitos que podemos ver a mitad del plano son depósitos de hidrógeno.

La otra aeronave se trata de una aeronave biplaza, más convencional, con un motor de combustión y uno eléctrico. El motor eléctrico le permitiría despegar de forma más silenciosa (o eso dicen, a nuestro entender casi todo el ruido en despegue procederá de la hélice y de los flaps).

Y en ambos casos parece que apuestan por el uso de materias renovables, como el uso de la madera para realizar los materiales compuestos, o bioresinas. Al fin y al cabo, las fibras de la madera embebidas en la lignina se comportan como la fibra de carbono embebida en la resina. ¿O era al revés?

No hay muchos más datos disponibles, esperemos que avancen en el proyecto y vayan publicando más cosas. Como ya dijimos, en su día todo parecía que funcionaría con biocombustibles, ahora estrenamos la era del hidrógeno. Esperemos que avancen por el buen camino.

Fuente: Avions Mauboussin.