Bombardier ensaya el segundo demostrador, más grande, de su concepto de BWB

En mayo Bombardier presentaba su concepto de avión de negocios tipo BWB, ya sabéis, esa mezcla de avión convencional con fuselaje sustentador y ala volante, en la que el fuselaje deja de ser un tubo para convertirse en un cuerpo sustentador, y el ala y el fuselaje se fusionan de forma especialmente suave.

Ahora han hecho volar su segundo demostrador tecnológico, a escala 1:5, de 6.10m de envergadura.

“Hemos volado un modelo mucho más grande, con un tamaño de 20 pies”, dijo el director de investigación y tecnología de Bombardier, Benoit Breault, a FlightGlobal en el Foro Internacional de Innovación Aeroespacial en Montreal el 6 de septiembre.

“Con solo cambiar la forma de la aeronave hoy, creemos que podemos reducir [las emisiones] entre un 17 y un 20 %”, dice el director ejecutivo Eric Martel.

Bombardier enfatiza que EcoJet no es un programa de desarrollo sino un esfuerzo por comprender cómo funciona esta configuración y solventar los problemas que pueden aparecer.

“No hay prisa en Bombardier en este momento”, dijo Martel. «Eventualmente, tenemos que desarrollar el próximo avión… Tengo gente trabajando en eso hoy».

Breault dice que la cabina de un avión BWB sería demasiado baja para un reactor de negocios pequeño, pero perfecto para el sector de los más grandes, en el que Bombardier ahora compite con su serie Global.

En lugar de una cola en T, EcoJet tiene una cola en U con dos estabilizadores verticales. Tiene dos motores montados en la parte superior del fuselaje de popa. (comentario de Sandglass Patrol: Esto permite cambiar la configuración de los motores con sencillez, de turbofan a turbo-hélice o rotor abierto, aleja el ruido de la cabina y los estabilizadores verticales lo apantallan del exterior.)

La forma del fuselaje genera del 20 al 30 % de la sustentación total, en comparación con el 5 al 10 % de un avión tradicional, dice Breault. Eso significa que las alas pueden ser más pequeñas, reduciendo el peso y la resistencia y, por lo tanto, requieren menos empuje y combustible, agrega. Así es como Bombardier llegaría a un ahorro de combustible estimado del 20%. (comentario de Sandglass Patrol: además la suave inserción del ala en el fuselaje reduce la resistencia). Dice también Breault que el diseño podría usar motores turbofan tradicionales o sistemas de propulsión novedosos.

Quedan muchos obstáculos para que esta configuración sea viable, pero el fabricante de aviones dice que tiene soluciones para los desafíos técnicos y de certificación que, de momento, han ido encontrando. “No hemos encontrado nada que descarte el concepto”, dice Breault.

Breault dice que Bombardier completó sus objetivos originales de prueba de vuelo para el modelo más pequeño, pero continuará usando ese avión para evaluar tecnologías antes de trasladarlas al demostrador más grande. Sin embargo, la compañía se niega a decir dónde está realizando los ensayos de vuelo, ni a proporcionar detalles de financiación o de tiempos, diciendo que el progreso depende de los resultados de las pruebas. Se ha asociado en el programa con universidades canadienses no identificadas.

Breault dice que los desafíos técnicos han hecho que el concepto de diseño BWB no se haya popularizado antes. Cita la complejidad del control de vuelo, que la ubicación de la cola en U y el ala requieren «leyes de control completamente diferentes», que todos los estudios aerondinámicos y de control están desarrollados para aviones tipo fuselaje de tubo, que hay que realizar estudios sobre la velocidad de pérdida, la dificultad de presurizar fuselajes no cilíndricos o la imposibilidad de desarrollar familias de aeronaves simplemente cortando el fuselaje e insertando más secciones, aunque Breault dice que Bombardier ha encontrado una «solución» a ese problema, sin dar más detalles.

“Creemos que tenemos algunas formas sofisticadas de hacer que los números nos cuadren”, dice. “Me permito creer… voy a poner uno en servicio antes de jubilarme”.

Fuente: Fligh Global

Euro HAPS, el dirigible-pseudo-satélite Europeo

Dirigible Stratobus, una de las plataforma del Euro HAPS

El INTA acaba de anunciar que entra a formar parte del EuroHAPS. El concepto no es nuevo: un dirigible, que ya sabéis que vuelven periódicamente a este blog, una aeronave más ligera que el aire, que puede permanecer en el aire de forma casi indefinida a gran altitud, realizando las mismas funciones que haría un satélite. En el blog hemos hablado varias veces de ellos, posiblemente los más destacados sean el ISIS o el dirigible satélite chinio Yuanmeng.

EuroHAPS desarrollará 3 demostradores tecnológicos más ligeros que el aire (LTA) (dirigible estratégico, dirigible híbrido y sistema autónomo de globos estratosféricos) que abordan 4 misiones ISR principales (3D LiDAR, Inteligencia de comunicaciones/Infrarrojo, Inteligencia de señales y telecomunicaciones).

La plataforma en la que participará el INTA es la basada en el Stratobus, otro viejo conocido que se ha estado desarrollo en Francia al menos durante la última década. El instituto estará presente a través del Departamento de Optoelectrónica y misilística

La duración estimada del proyecto es de 38 meses, con un coste estimado total de 63,520,763.14€, de los cuales la Unión Europea financiará un máximo de 43,000,000.00€.

La lista completa de empresas que participan en el consorcio puede verse en este PDF.

Fuentes: Noticias Aero

Embraer recupera el diseño conceptual del «Vector» para su nuevo turbohélice

Nuevo concepto vs Embraer/FMA CBA 123 Vector

Hace un par de años Embraer hacía públicas unas imágenes de un nuevo avión de transporte táctico y un turbohélice de pasajeros. Poco a poco la imagen del nuevo turbohélice ha ido evolucionando hasta la que mostramos sobre estas líneas. Que es la misma que aparecen en las noticias que proclaman que Embraer habría firmado más de 250 cartas de intenciones para este nuevo turbohélice.

Familia de aviones ecológicos

También dejó entrever este concepto cuando presentó su familia de aviones ecológicos.

Para un desarrollo más rápido, el avión compartiría fuselaje con los aviones de la serie E, y estaría planeando dos variantes, una con 70 y otra con 90 asientos.

Sin embargo, a diferencia de los anteriores, se apuesta por una instalación de los turbohélices en la cola, en lugar de bajo las alas, por dos motivos: mejorar el confort acústico de la cabina de pasajeros y hacer que el soporte de los motores sea más flexible, adaptándose a distintas soluciones de motorización de forma sencilla.

Nuevo concepto de diseño de turbohélice de Embraer

Así que aunque espera escoger este año el proveedor de motores turbohélices para el avión que espera lanzar en 2023, escoge la ubicación de estos pensando en una futurible actualización a otras tecnologías, como el hidrógeo, y otros motores. Además los pasajeros podrían, visualmente, diferenciar el avión e identificarlo con algo novedoso, y no el avión de siempre. Todo esto según Rodrigo Silva e Souza, vicepresidente de márketing y estrategia de Embraer,

Praetor 600

La nueva configuración del turbohélice podría recordar al Praetor 600, el mayor de los hermanos de los aviones de negocios Legacy, también de Embraer.

Pero a nosotros nos recuerda más a un avión que nació de la cooperación argentino-brasileña. El Embraer/FAMA CBA-123 Vector.

Embraer/FMA CBA-123 Vector

Prototipo del Embraer/FMA CBA-123 Vector, fruto de la copeeración argentino-brasileña. Foto de Wikipedia

Al Vector le pasó como a tantos otros buenos aviones: ser demasiado innovador y demasiado caro le llevó a la tumba.

En los años 80 Embraer gozaba de cierto éxito con sus Brandeirante y Brasilia. Pero había que reemplazarlos por uno más avanzado… Y decidió hacerlo en cooperación con la FMA, de ahí lo de CBA: Colaboración Brasileño-Argentina.

El trabajo se dividió entre los países y Embraer asumió el 67% de la carga de trabajo y los costos, mientras que el 33% restante se asignó a FMA. Los argentinos debían construir inicialmente las alas y los timones. Embraer, el resto. Sin embargo, el papel de FMA se cambió más tarde al fuselaje central, el fuselaje trasero y los estabilizadores horizontales. El plan original para el fuselaje era utilizar una versión alargada del EMB 121 Xingu, pero los socios optaron por una versión más corta del Brasilia.

La disposición de los motores aseguraba una cabina más silenciosa: en cabina se medían ~75db, lo que lo hacía más cómodo que un 737-300.

El motor elegido fue el Garrett TPF351-20, evolución del TPE331-12B. Tener los motores ubicados en la cola no solo proporcionó niveles de ruido de cabina más bajos, sino que también les dio a los ingenieros la oportunidad de diseñar un ala más eficiente y pensada para una velocidad de crucero mayor.

La velocidad de crucero más rápida del Vector fue de aproximadamente 350 a 360 nudos a 25000 pies, aunque el crucero económico lo hacía entre 30000 y 35000 pies.

El equipaiento aviónico era fuera de serie para su época. Incluía un sistema electrónico de instrumentos de vuelo (EFIS), un sistema de referencia de actitud y rumbo (AHRS), un sistema de indicación de motor y alerta a la tripulación (EICAS) y FADEC.

Aunque el primer vuelo estaba previsto para 1988, finalmente se produjo el 18 de julio de 1990, justo a tiempo para ser presentado en Farnborough el 30 de julio de 1990. El segundo prototipo volaría en marzo del 91, también a tiempo para Le Bourget.

Primer vuelo

A partir de 1991, el programa se interrumpido varias veces por diversas razones. El CBA 123 era tan sofisticado y avanzado que requirió más inversión.

Embraer, que todavía era una empresa estatal (la privatización se produjo en 1994), atravesaba un período de crisis y, para empeorar las cosas, FMA también estaba en dificultades financieras, además de no tener un presupuesto propio (FMA era una departamento de la Fuerza Aérea Argentina), lo que dificultó la transferencia de fondos al proyecto conjunto. En noviembre de 1990, Embraer inició sus medidas de reducción de costos, incluida la eliminación de casi el 30% (4.000 puestos de trabajo) de su fuerza laboral.

El consorcio sudamericano había planeado originalmente que el Embraer/FMA CBA 123 Vector se vendiera por 3M$, sin embargo, a medida que pasó el tiempo (y aumentaron los costes de fabricación), el precio también aumentó. Para el cuarto trimestre de 1990, el avión había alcanzado un precio estimado de alrededor de 5M$, lo que lo hacía aproximadamente 1 millón más caro que los turbohélices de 19 asientos de la competencia.

Considerado demasiado avanzado para su época, frase que se repite demasiado a menudo justo antes de decir que un prometedor proyecto fue cancelado, el CBA 123 prácticamente no tenía competidores en el mundo en términos de velocidad, seguridad y silencio a bordo. Sin embargo, los altos costos de desarrollo lo hicieron poco competitivo, es decir difícil de vender.

Para competir en el mercado de 19 asientos, Embraer y FMA optaron por hacer opcionales algunos elementos del equipamiento. Sin embargo, el paquete de aviónica avanzada y el motor tuvieron un alto precio.

Foto de Wikipedia

Y no solo estaba fuera de mercado por precio, el mercado de la aviación regional ya había tomado otra forma y comenzó a dar preferencia a las aeronaves con motores a reacción y mayor capacidad de pasajeros.

En 1992, se canceló el proyecto CBA 123. Embraer y FMA habían firmado un contrato inicial para adquirir un total de 60 aviones, pero solo se produjeron dos prototipos completos, y un tercero al 80%.

El primer prototipo (PT-ZVE) puede verse en el Memorial Aeroespacial Brasileiro en São José dos Campos. El segundo prototipo (PT-ZVB) en el Museu Aeroespacial de Río de Janeiro. El prototipo que no se llegó a completar está en la Facultad de Ciencias Exactas de la Universidad Nacional de Córdoba (UNC), Argentina.

Fuentes

[Vídeo] Airbus y CFM ensayarán un motor de rotor abierto en el A380

Imgaen vía Airbus

La colaboración entre Airbus, General Electric y Safran (estos dos últimos forman el consorcio CFM) no se detiene en el motor Passport modificado para ser alimentado con hidrógeno para volar a lomos de un A-380, sino que además han firmado ensayar el motor de rotor abierto (también conocido como open-rotor, y antiguamente como unducted-fan y antes aún como prop-fan) instalado como motor interior izquierdo de un A-380.

El acuerdo se ha dado a conocer hoy en la feria de Farnborough.

Imgaen vía Airbus

La tecnología del rotor abierto no es nueva. Nació y se ensayó durante la anterior crisis petrolífera, conocida como Crisis de la OPEP. ¿Su ventaja? Consumir mucho menos que los turborreactores y motores de bajo índice de derivación empleados entonces. ¿La desventaja? El ruido. Y aunque hoy día se utilizan motores con alto índice de derivación y la mejora en consumo respecto a los mismos no es tanta, en una coyuntura económica donde el combustible va a escasear y va a subir de precio, cualquier ahorro es bienvenido. ¡Ah! y, además, es verde y compatible con otras tecnologías como la híbrida eléctrica o el hidrógeno.

¿Qué es un rotor abierto? Básicamente un turbofan con un ventilador tan grande que se hace poco práctico carenarlo con un fan-cowl. O un cruce entre turbo-fan y turbohélice.

¿Y el problema con el ruido que hizo que no triundaran en los 70 y 80? He aquí la verdadera maravilla e innovación de estos motores. Las nuevas tecnologías han logrado desarrollos más silenciosos.

¿Cuánto tardaremos en ver al político de turno quejándose de que los aviones a hélice son cosa del pasado y tercermundistas? Amigos míos, si logran que vean que son más verdes, con suerte, no los veremos.

El avión se instrumentará para ensayos en vuelo, y se rediseñará el pilón que soporta el motor, así como localmente la estructura del ala a la que va unido.

La evolución del motor ha ido cambiando, desde el unducted-fan de GE, en el que cada rotor era movido por una turbina distinta, al CROR desarrollado bajo el programa marco Clean Sky, en el que los rotores eran contra-rotativos, al actual concepto, similar al de un turbo-fan, con un rotor y un estator cuyas palas pueden variar su paso en vuelo.

Además, General Electric realizará pruebas en tierra sobre un 747.

Se espera que el motor consuma un 20% menos que un motor actual, y que tenga un empuje de 20 a 35 mil libras, como un turbofan LEAP 1, como los montados por algunos A-320.

Fuentes: Airbus y Aviation Week