Spitfire: el primer avión que sufrió retrasos por la subcontratación masiva

Un día como hoy, cinco de marzo, pero de 1936 volaba por primera vez uno de los aviones que está considerado como de los más elegantes de la historia, el Spitfire. Así que en su 88 aniversario queremos contar una historia poco conocida: fue el primer avión en sufrir un retraso ¡de casi dos años! por los problemas surgidos de la subcontratación masiva y las cadenas de suministro.

Un cliente quejándose de los retrasos en la producción y la entrega del avión. Una compañía fabricante de aviones quejándose de la calidad de las entregas sus subcontratistas y de sus retrasos. Los subcontratistas quejándose de los plazos del fabricante, de la calidad de sus planos, y de los continuos cambios sin sentido pedidos. ¿Os suena familiar? Pues no se trata de una historia de Airbus ni de Boeing.

Continuar leyendo «Spitfire: el primer avión que sufrió retrasos por la subcontratación masiva»

[Vídeo] General Atomics ha probado su UAV STOL «Mojave» a bordo del HMS Prince of Wales

General Atomics Aeronautical Systems (GA-ASI) ha realizado un ensayo con su avión no tripulado de despegue y aterrizaje corto (STOL) operándolo por primera vez desde un portaaviones, el británico HMS Prince of Wales, de la Royal Navy.

La demostración tuvo lugar el 15 de noviembre de 2023, cuando el Prince of Wales navegaba frente a la costa este de los EE. UU. Controlado por operadores a bordo del barco, el Mojave realizó un despegue, varios circuitos y aproximaciones y varias tomas, con toma final sobre la cubierta del portaaviones.

El despegue se realizó en un ángulo, no siguiendo el eje de la cubierta, para no utilizar el sky-jump. El desafío a largo plazo sería definir el margen de operación seguro para la aeronave cuando esté cargada con combustible, armas y sensores, y operando en condiciones menos favorables, así como su recuperación sin utilizar cables de frenado, caso de particular interés de estudio desde el punto de vista de la seguridad cuando haya otros aviones estacionados en la cubierta.

En esta foto se aprecia bien el slat, los grandes flaps, y su gran superficie alar

El ensayo de Mojave es el primero en Europa: la primera vez que un sistema de aeronaves pilotadas remotamente de este tamaño ha despegado y aterrizado desde un portaaviones, fuera de los Estados Unidos. El éxito de este ensayo anuncia un nuevo amanecer en cómo llevamos a cabo la aviación marítima y es otro emocionante paso en la evolución del Grupo de Ataque de Portaaviones de la Royal Navy en una fuerza de combate tripulada y no tripulada mixta”.

Contraalmirante James Parkin, Director de Desarrollo de la Royal Navy

Aplaudimos la visión de futuro de la Royal Navy al probar esta capacidad sin precedentes para sus portaaviones. Sabíamos que nuestra capacidad STOL permitiría que un UAS despegar y aterrizar con seguridad en el Prince of Wales. Ver a nuestro Mojave operar con éxito en este entorno abre una miríada de nuevas formas en que nuestras aeronaves pueden ser utilizadas para apoyar operaciones navales multidominio.

Linden Blue, CEO de GA-ASI

No es el primer avión no tripulado que opera desde este portaaviones, puesto que en septiembre de 2023 la Royal Navy realizó ensayos con un uav de carga, pensado para reabastecer los portaaviones. El drone de W Autonomous Systems (WAS), con sede en Southampton, voló desde la península de Lizard y aterrizó en la cubierta del HMS Prince of Wales, frente a la costa de Cornualles, entregó suministros y luego regresó a tierra, en un vuelo histórico.

El desarrollo del Mojave comenzó alrededor de 2018 o 2019. El objetivo inicial era crear un avión no tripulado que pudiera realizar despegues y aterrizajes verticales (VTOL), pero se comprobó, una vez más, que esto no era práctico ya que comprometería bien la carga de pago, bien la autonomía de la aeronave, por su excesivo consumo durante estas operaciones.

En su lugar, el desarrollo se centró en un diseño STOL, que mantendría las prestaciones de la aeronave, sin que la incorporación de dispositivos hipersustentadores especiales o ruedas tundra para pistas no preparadas comprometieran las prestaciones del avión.

El Mojave tiene una configuración similar a la del MQ-9 Reaper, y está propulsado por un turbohélice Rolls-Royce M250. Es un desarrollo del MQ-1C, del que se diferencia principalmente en el ala y el tren de aterrizaje. El Mojave cuenta con slats retráctiles, flaps de gran envergadura, y alerones que doblan función como alerón y como flap (flaperones). Además, los flaps son soplados, de doble ranura. El tren de aterrizaje está reforzado, monta amortiguadores especiales,y neumáticos de mayor tamaño, y de menor presión de inflado, al estilo ruedas de tundra, para poder operar en pistas no preparadas, como demostró en agosto de este año.

Además de poder operar desde pistas no preparadas o desde cubiertas de barco, sin hacer uso de sus cables ni catapultas, es muy fácilmente transportable, pudiéndose desensamblar y transportar en un Hércules, y volver a ensamblar y estar listo para despegar en una hora y media, con un equipo de tierra de cuatro personas.

También se está desarrollando de un ala opcional, plegable, para el MQ-9B, que lo convertiría en un aparato STOL, que recibiría el nombre MQ-9B STOL. Esta variante está siendo considerada por la Royal Navy y otras armadas que operan aviones desde grandes buques de guerra de cubierta plana sin catapultas y equipos de detención.

¿Podríamos verlo en un futuro cercano en el Kaga, el Anadolu, o nuestro Juan Carlos I?¿Se estará planteando el Sirtap, de desarrollo español, ya con capacidad embarcada?

Curiosamente, no es la primera vez que hablamos de aviones no tripulados embarcados en portaaviones, las primeras veces que lo hicimos fue para hablar de los TDR-1 y TDN-1, ¡de los años 40!

Fuentes: General Atomic, Royal Navy, Navy Look Out

El dron cuadricóptero más grande del mundo, con un peso inferior a 25 kg, realiza su primer vuelo.

La Autoridad de Aviación Civil (CAA) del Reino Unido permite que los vehículos aéreos no tripulados con un peso de despegue inferior a 25 kg (55 lb) vuelen sin normas especiales, por lo que el equipo de Manchester diseñó un modelo que pesaba 24.5 kg (54 lb) para cumplir con el límite, a pesar de medir 6.4m (21 ft) de punta a punta .

El innovador diseño del dron, llamado Giant Foamboard Quadcopter (GFQ), lo hace único en su clase. Los cuatro brazos están formados por una serie de estructuras huecas en forma de caja que se pueden desmontar fácilmente para transportarlo. Hasta la fecha no hay registro de un cuadricóptero no tripulado más grande que el vehículo de Manchester.

El proyecto comenzó como una iniciativa impulsada por la curiosidad para inspirar la creatividad de los estudiantes en el diseño, utilizando un material alternativo de bajo costo adecuado para estructuras aeroespaciales ligeras y más respetuoso con el medio ambiente que la fibra de carbono embebida en matriz epoxi, no reciclable, habitual.

A diferencia de la fibra de carbono, los materiales de lámina de baja densidad pueden ser altamente reciclables, e incluso compostables. Los investigadores esperan que esta demostración inspire a la próxima generación de diseñadores a pensar en la sostenibilidad desde una perspectiva completamente nueva.

Dan Koning, ingeniero de investigación en la Universidad de Manchester, quien lideró el diseño y construcción del vehículo, dijo: «El foamboard -cartón pluma en español, normalmente- es un material interesante para trabajar, utilizado de la manera correcta, podemos crear estructuras aeroespaciales complejas donde cada componente está diseñado para ser solo tan resistente como necesita ser; no hay lugar para la sobreingeniería aquí».

«Gracias a esta disciplina de diseño y después de una extensa investigación previa, podemos afirmar con confianza que hemos construido el dron cuadricóptero más grande del mundo».

Si bien este dron se desarrolló puramente como un ejercicio de prueba de concepto, futuras versiones de este tipo de vehículo podrían diseñarse para transportar cargas pesadas a cortas distancias o utilizarse como una «nave nodriza» (o portaaviones aéreo) en experimentos de acoplamiento aire-aire con otras aeronaves.

El cuadricóptero fue construido con láminas de cartón pluma de 5 mm de grosor, que tienen un núcleo de espuma y una capa de papel. Las láminas fueron cortadas a medida con láser y ensambladas en la estructura tridimensional a mano utilizando solo pegamento termofusible.

Nota de Prensa

Un UAV ha aterrizado y despegado de un portaaviones de la Royal Navy

Un avión sin piloto ha aterrizado -y despegado nuevamente- desde un portaaviones de la Royal Navy por primera vez.

El dron HCMC de W Autonomous Systems voló desde Predannack cerca de Culdrose hasta el HMS Prince of Wales en las cercanías de Lizard, entregando regalos ceremoniales y regresando poco después para aterrizar llevando muestras de combustible.

Este innovador ensayo es un indicio del futuro, cuando es probable que los drones reemplacen a los helicópteros en el traslado de suministros y provisiones entre barcos en un grupo de tareas.

Fuente: nota de prensa

Blind Landing Experimental Unit (BLEU) – el nacimiento del aterrizaje a ciegas

Aterrizaje a ciegas, sin automatizar

BLEU: Blind Landing Experimental Unit

La Unidad Experimental de Aterrizaje a ciegas (BLEU) del Royal Aircraft Establishment (RAE) se formó en 1945, inicialmente en RAF Woodbridge pero se trasladó a RAF Martlesham Heath a principios de 1946. Era una unidad multidisciplinar, atrayendo personal de RAE Farnborough y el Establecimiento de Investigación de Telecomunicaciones, Malvern (TRE), encargado del desarrollo de aproximacióna  ciegas y aterrizaje autónomo de aeronaves RAF, navales y civiles.

El sistema desarrollado por BLEU utilizó señales de radio como guía, un sistema de aterrizaje por instrumentos (ILS) anterior que definía la línea central de la pista, y un ángulo de aproximación de 3 grados a la pista. La guía en azimut durante la fase final de la aproximación se guiaba con un cable magnético, y se desarrolló un radioaltímetro controlar la y un sistema de gases automático para controlar la velocidad de la aeronave.

Los componentes del sistema se desarrollaron por separado en varios tipos de aviones y en 1950 todo el sistema de aterrizaje automático se había integrado en un avión Devon para realizar las demostraciones finales. En 1953, el desarrollo se extendió a un bombardero Canberra, aunque en ese momento, el aterrizaje automático tenía una prioridad baja para la RAF, y el esfuerzo se concentró en otros proyectos. Esto cambió cuando se emitió un requisito operativo para el aterrizaje automático para los “V-bomber” en 1954.

Tras los ensayos en el Canberra y el Devon, el sistema completo se instaló en un avión más grande, el Varsity. La primera aproximación y aterrizaje completamente automáticos en el Varsity se realizaron el 11 de noviembre de 1954. El desarrollo del sistema completo continuó en Martlesham Heath hasta principios de 1957 cuando BLEU se mudó a Thurleigh ( RAE Bedford).

El desarrollo del Autoland continuó utilizando tres aviones Varsity, y un tercer Canberra que reemplazó a dos perdidos por fallos en el motor. El sistema se mostró a muchas organizaciones e individuos, incluido el duque de Edimburgo en 1959.

Para octubre de 1958, los aviones BLEU habían completado más de 2000 aterrizajes totalmente automáticos.

El proyecto para integrar el Autoland en los bombarderos V desarrolló en paralelo al trabajo en los Varsity y Canberra, con un avión Vulcan, en el que se instaló el sistema durante 1959. El desarrollo y las pruebas de vuelo de Autoland progresaron con éxito, y el Vulcan con este sistema fue aceptado para el servicio militar en 1961 .

El nivel de seguridad requerido para Autoland militar se especificó como una tasa de fallos no superior a 1 entre 120,000 aterrizajes. Un sistema de un canal se juzgó adecuado para cumplir con esta tasa, pero la falta de redundancia hacía que el fallo de un solo componente hiciera que el piloto tuviera que retomaa el control manual y aterrizar visualmente la aeronave, o frustrara la toma con un motor y al aire. Se llevó a cabo un programa intensivo para establecer la capacidad de los pilotos para reconocer y recuperarse con éxito de los fallos del sistema. Además de las pruebas de vuelo en condiciones de niebla simulada, también se utilizó un simulador BLEU desarrollado especialmente para la investigación de aproximación y aterrizaje con baja visibilidad. Se llevó a cabo una investigación considerable sobre las formas de proporcionar al piloto información visual en una pantalla de cabina (Televiewer) y proporcionar información de seguimiento superpuesta en la vista exterior (Head Up Display).

Otro área de investigación se centró en las ayudas visuales necesarias para permitir al piloto controlar la situación de la aeronave durante las etapas finales de una aproximación. Además, se necesitaban suficientes señales visuales en la pista para permitir que el piloto despegara con seguridad con poca visibilidad y para que la aeronave no se saliera de la pista después del aterrizaje. Estas ayudas visuales también resultaron vitales para que el piloto detectara cualquier falla del sistema. El patrón de iluminación desarrollado y probado en vuelo por BLEU, en condiciones de base de nubes cero y visibilidad hacia adelante de 50 pies, finalmente se adoptó como el estándar de la Organización de Aviación Civil Internacional (OACI) para operaciones de baja visibilidad, y ahora está instalado en los principales aeropuertos de todo el mundo.

Las aerolíneas civiles habían seguido de cerca este desarrollo. Las espesas nieblas durante los meses de invierno eran comunes en Europa y empeoraban con el humo cerca de las principales ciudades (por ejemplo, el «smog» de Londres). Los retrasos y desvíos a alternativos causados por estas condiciones aumentaron mucho los costes para las aerolíneas, particularmente para BEA con su base de operaciones en Londres Heathrow.

A fines de la década de 1950 y principios de la de 1960, una mayor cooperación entre BLEU, la UK Air Registration Board, la industria de la aviación y las aerolíneas, llevó a la UK Air Registration Board a definir el requisito de seguridad para Autoland como no más de un accidente fatal en 10 millones de aterrizajes (10 veces más seguro que si los pilotos aterrizaran manualmente).

Para cumplir con un requisito de seguridad tan estricto, el sistema tenía que ser capaz de tolerar los fallos durante el aterrizaje automático. Esto podría lograrse utilizando un sistema triplex, con redundancia triple, como el actual utilizado para captación de datos por parte de Airbus: tres canales independientes, uno de los cuales se desconecta si sus datos no son conformes con los de los otros dos, o un sistema dúplex con un control de fallos.

Se reconoció que el cable magnético de guía no sería práctico para instalar en aeropuertos civiles y se hizo un esfuerzo considerable para mejorar la precisión del ILS durante la década de 1950. A principios de la década de 1960, los diseños nuevos para los transmisores ILS mejoraron hasta tal punto que ya no se requería el cable.

BLEU desempeñó un papel de liderazgo para lograr que el aterrizaje automático y el ILS fueran seguros bajo los estrictos requisitos establecidos para la aviación civil.

En 1961, la Autoridad Federal de Aviación de EE. UU. envió un Douglas DC-7 a RAE Bedford para que se instalara el sistema BLEU y se probara en vuelo. Después de eso, y de más pruebas al regresar a Atlantic City, la FAA apoyó firmemente la solución totalmente automática del Reino Unido, estandarizando así allí también las tomas automáticas en situaciones de mala visibilidad.

La flota de aviones BLEU se actualizó para que fuera  más representativa de los aviones civiles. En 1961 se adquirió un DH Comet 3B (XP915) y en 1966 un DH Comet 2E (XV144) equipado con un sistema “tríplex” completo.

En 1963, BLEU recibió el Trofeo Cumberbatch por su destacada contribución a la seguridad aérea.

Se desarrollaron métodos para medir el alcance visual en la pista (RVR) y el alcance visual inclinado (SVR), y se llevaron a cabo pruebas para determinar la supervisión del piloto y las capacidades de toma de control en todas las condiciones de visibilidad. Este trabajo fue un aporte importante a la definición de un conjunto de categorías para operaciones en todas las condiciones meteorológicas, especificando la altura de decisión mínima y el RVR mínimo requerido para cada categoría, adoptado por la OACI en 1965.

Visibilidad, RVR y SVR

En 1972, los aviones Comet fueron reemplazados por un BAC 1-11. El último de los aviones Varsity (WF417), que había sido el «caballo de batalla» para la mayoría de las pruebas de BLEU, fue reemplazado por un HS 748 XW750.

La introducción de Autoland en la flota de Trident de BEA requirió un gran esfuerzo por parte de BEA, Hawker Siddeley Aviation, Smiths Industries y BLEU. La certificación pasó de la Categoría I en 1965, a la Categoría II, III(a), III(b) y finalmente a la Categoría III(c) en 1979. Durante este tiempo se analizaron unos 40.000 aterrizajes automáticos.

Smiths y BLEU también desarrollaron un sistema de aterrizaje autónomo para el carguero Belfast de la RAF.

BLEU fue líder mundial en el desarrollo del aterrizaje automático, y los sistemas

actuales son esencialmente los mismos que desarrolló BLEU.

En 1974, BLEU pasó a llamarse División de Sistemas Operativos, parte del Departamento de Sistemas de Vuelo.

Autoland CAT III

Fases del Autoland 1958

Fases del autoland

El avión se aproxima (A-B) al aeródromo con el piloto automático utilizando el altímetro barométrico para mantener una altitud constante de la aeronave (por ejemplo, 1500 pies), y utilizando la señal del localizador ILS para encontrar y luego mantener la línea central de la pista. El acelerador automático controla con precisión la velocidad de aproximación al valor seleccionado por el piloto. Cuando se intercepta el haz de la trayectoria de planeo del ILS (en B), se inicia el descenso (fase GLIDE) con el control de altura barométrica desconectado y controlando la aeronave para que siga el haz de la trayectoria de planeo del ILS (normalmente definiendo una trayectoria de descenso de 3 grados hacia el haz de planeo). La señal del localizador ILS todavía se usa para guía lateral y no abandonar el eje de la pista..

A una altura aproximada de 300 pies, la aeronave entra en la cobertura de la señal del cable guía (en C) y el piloto automático cambia automáticamente del localizador ILS al cable guía (fase LEADER CABLE). En elevación, la aeronave continúa siendo controlada a la trayectoria de planeo ILS.

A una altura de aproximadamente 100 pies (D), la señal de la trayectoria de planeo del ILS se desconecta y la aeronave se controla a un datum de cabeceo medio calculado automáticamente mientras vuela por la trayectoria de planeo (fase de ATTITUDE). Esto continúa durante unos segundos hasta una altura de unos 60 pies (E), cuando el control vertical se transfiere al radioaltímetro (fase FLARE), y la velocidad de descenso se reduce gradualmente para lograr un aterrizaje suave. Los aceleradores van cortando gases automáticamente a una velocidad constante hasta la velocidad de ralentí de vuelo segura del motor.

Aproximadamente a 20 pies (F), se desconecta la señal del cable líder, se nivelan las alas y se aplica el timón para eliminar automáticamente cualquier deriva debido a un viento cruzado (fase KICK OFF DRIFT). Después del contacto con el suelo, el piloto desactiva el piloto automático y dirige la aeronave a lo largo de la pista (G-H), utilizando información visual o un vector de dirección dado por una combinación de la señal del cable guía y el rumbo de la brújula. El piloto también aplica el frenado manual para llevar la aeronave a una velocidad de rodaje segura.

Fuentes