Las exigencias operativas de los eVTOL acortan la vida útil de las baterías.

Sabemos que el primer avión eléctrico voló hace más de cincuenta años, y desde entonces cada vez que han vuelto han tenido el mismo problema: si bien los motores son fiables y ligeros, las baterías pesan demasiado y tienen una densidad energética baja.

Con el boom de los vehículos eléctircos terrestres (EV), parece que se ha revivido la fiebre de la aviación eléctrica, y se está intentando utilizar las mismas baterías de litio.

E igual que un motor de automoción puede no ser idóneo para un avión, porque el vehículo de tierra funciona normalmente al 30-40% de su potencia máxima, que sólo necesita en picos mientras que el motor de avión funciona al 75-85% de manera constante, puede que la solución de las baterías eléctricas de los EV no sean la mejor.

Aunque el rendimiento de las baterías de iones de litio en los EVs está bien estudiado, su rendimiento en la industria de la aviación es relativamente desconocido, y aún no está claro cómo estas baterías resistirán las duras condiciones a las que estarán sometidas durante las operaciones de taxi aéreo eVTOL.

Por ello, investigadores del Laboratorio Nacional Oak Ridge (ORNL) en Tennessee llevaron a cabo un estudio sobre los efectos que el perfil de vuelo de una aeronave eVTOL tendrá en las baterías de EV después de ciclos repetidos, simulando operaciones típicas de taxi aéreo.

El equipo de investigación encontró que las demandas de potencia y rendimiento para el vuelo eVTOL reducen el rendimiento y la longevidad de la batería, lo que podría representar una amenaza para la seguridad. También podría aumentar el costo del mantenimiento de las aeronaves, ya que las baterías necesitarán ser reemplazadas con frecuencia. Una vez más, la demanda de potencia del motor, debido al perfil de utilización distinto en un tipo de vehículo y otro, puede suponer un problema.

Cuando los eVTOL despeguen verticalmente, las baterías están sujetas a una demanda de energía muy alta, y según el investigador Ilias Belharouk será el momento en el que la batería puede ser más peligrosa.

Belharouak y su equipo tienen como objetivo mitigar este problema avanzando en la tecnología de baterías de iones de litio y optimizando las celdas de batería para los vuelos eVTOL. Pero para encontrar las mejores soluciones, primero necesitaban definir a fondo el problema. Con este estudio, el equipo buscó determinar exactamente qué sucede con las baterías a nivel subcelular cuando se someten a las altas demandas de potencia de los vuelos eVTOL con ciclos repetidos. Los hallazgos ayudarán a informar su búsqueda de nuevos materiales, especialmente para los electrolitos de la celda, lo que podría llevar a un mejor rendimiento y resistencia.

Altas Demandas de Potencia

Como hemos comentado anteriormente, nada tienen que ver el perfil de uso de las baterías de litio en los eVTOL con el perfil de uso en los automóviles.

Las baterías eléctricas para taxis aéreos también soportarán cargas y descargas más frecuentes y rápidas que los vehículos terrestres. El perfil de uso del coche hace que la mayor parte de su vida operativa esté estacionado. Sin embargo, el perfil de uso de una aeronave comercial es el contrario: si la aeronave está parada está perdiendo dinero. De hecho, en los estudios de viabilidad de los eVTOL suelen citarse tasas de utilización mucho más altas que las de los helicópteros, debido a su supuesto menor mantenimiento. De sobra es conocido que los aviones de aerolínea paran lo mismo. Así que mientras que el perfil de uso de un automóvil es de viajes de entre 10 y 50 minutos con largos periodos de inactividad, se espera que el perfil del eVTOL sea de vuelos durante todo el día, con ciclos de vuelo de 10 minutos intercalados con recargas rápidas, normalmente de otros diez minutos. «Realmente necesitas cargarlos muy rápido y descargarlos muy rápido… lo que ejerce mucha presión sobre estas baterías», dijo Belharouak.

Belharouak y su equipo en ORNL realizaron pruebas simuladas de baterías eVTOL utilizando baterías representativas que construyeron en el lugar en la Instalación de Fabricación de Baterías del Departamento de Energía. Monitorizaron el rendimiento de la batería durante el ciclo y luego evaluaron los componentes de la batería posteriormente para verificar la corrosión y otros cambios químicos o estructurales utilizando un microscopio electrónico de barrido.

«Tu batería no es solo la vida útil de 1,000 ciclos. Es lo que sucede dentro de un ciclo lo que te dice si tu sistema funcionará o fallará», dijo Marm Dixit, el investigador principal del estudio. Y los riesgos son mayores, ¡no son vehículos que puedas parar en un arcen en caso de problemas, estan volando!

Para la simulación, los investigadores emplearon una alta tasa de descarga durante 45 segundos, lo que se espera que dure el despegue vertical más la transición a crucero, seguido de una descarga a baja velocidad para simular el vuelo de crucero.

Durante el ciclo de crucero, la batería recuperaba su condición normal. Pero la sucesiva repetición de este tipo de ciclos rápidos e intensos hacía que las baterías, electrolito y ánodo se degradaran, no así el cátodo.

La solución ¿está en el electrolito?

Así que estamos con el problema de siempre, pero ampliado. No sólo necesitamos una batería de mayor densidad energética, sino que además deben aguantar estos ciclos tan distintos a los de los automóviles.

Y mientras se dependa de las baterías de litio, hay que mejorarlas. Los investigadores están constantemente buscando maneras de hacer que las baterías funcionen mejor y duren más utilizando diferentes materiales para sus componentes, incluyendo ánodos, cátodos y electrolitos. Por ejemplo, el fabricante de baterías Amprius está utilizando ánodos de nanocables de silicio en las baterías que ofrece para aplicaciones de aviación eléctrica.

Belharouak y su equipo creen que la solución para hacer que las baterías de iones de litio sean más adecuadas para las operaciones de eVTOL radica en el electrolito, el medio entre el cátodo y el ánodo de una batería por el que los iones de litio viajan durante la carga y descarga.

Si bien el equipo de ORNL se está enfocando en soluciones de electrolito por ahora, el objetivo final del programa de investigación es eventualmente desarrollar una química de batería completamente nueva que podría reemplazar a las baterías de iones de litio para aeronaves eléctricas.

Ejemplos de nuevas químicas de baterías que podrían ser prometedoras para aplicaciones de aviación incluyen las baterías de estado sólido, que reemplazan el electrolito líquido o en gel con un material sólido, o las baterías de litio-azufre, ambas de las cuales pueden ofrecer las mayores densidades de energía necesarias para habilitar vuelos de mayor alcance.

Belharouak enfatizó que cualquier tipo de baterías destinadas a aplicaciones de eVTOL «deberán ser entendidas y comprendidas en función del conjunto de protocolos a los que van a ser sometidas, no solo en función de la densidad de energía y potencia».

Fuentes: AIN Online y Oak Ridge National Laboratory

Eviation rediseña su avión eléctrico Alice de cara a su fabricación en serie

Eviation Alice, cada vez más parecido al CBA-Vector

Eviation ha revelado un diseño radicalmente reformado para su avión de pasajeros totalmente eléctrico Alice basado en los comentarios de los clientes, y de estudios de industrialización.

El diseño es mucho más convencional que las imágenes presentadas anteriormente. El primer prototipo que voló ya abandonó la cola en V con un motor trasero y dos en punta de plano, a favor de una configuración típica que recuerda a la de los reactores de negocios, con motores en cola, y especialmente recuerda al FMA-CBA Vector, nada ere ver con el prototipo original, que ardió.

El diseño final, además abandona la forma elíptica del fuselaje, optando por uno de sección constante, lo que facilita su fabricación, además de abaratarla, o facilitar el desarrollo de versiones alargadas o acortadas, y mejora la habitabilidad de la cabina.

Prototipo del Alice, que realizó su primer vuelo en 2022

El ala ahora presenta grandes winglets, en lugar de las puntas inclinadas hacia arriba del prototipo, y los soportes que sostienen los motores eléctricos parecen estar más altos en el fuselaje que anteriormente.

Realizada junto a TLG Aerospace, la revisión de diseño conceptual se basó en los datos recopilados del vuelo de 8 minutos de Alice en septiembre de 2022, el único vuelo de la aeronave, y en pruebas de túnel de viento recientemente completadas. Además de los habituales estudios de industrialización y fabricabilidad y reuniones con los clientes.

Anteriormente, Eviation había declarado que volaría un prototipo de pre-producción en 2025 con el objetivo de obtener la certificación aproximadamente dos años más tarde. Afirma que tiene pedidos para el Alice por un valor superior a los $5 mil millones.

Nota de prensa de Eviation sobre su avión eléctrico Alice

Eviation ha completado la Revisión de Diseño Conceptual de la aeronave totalmente eléctrica Alice. La revisión es un hito significativo hacia la certificación y comercialización de Alice. El diseño de la Aeronave de Producción de Alice está optimizado para la certificación, la fabricación simplificada y para brindar una experiencia de pasajeros de clase mundial.

ARLINGTON, Washington, EE. UU., 25 de enero de 2024 – Eviation Aircraft, fabricante de aeronaves totalmente eléctricas, anunció hoy que ha completado la Revisión de Diseño Conceptual (CoDR) de la aeronave Alice. La revisión es un hito significativo, asegurando una configuración que es certificable y que permite una fabricación simplificada. Mantiene el aspecto distintivo de Alice, al tiempo que optimiza el rendimiento y mejora aún más su incomparable experiencia en cabina.

La CoDR, realizada con el apoyo de TLG Aerospace, se basó en los extensos datos recopilados del pionero vuelo de Alice en 2022, pruebas en túnel de viento recientemente completadas en el Túnel de Viento Kirsten en Seattle, retroalimentación de la junta asesora de clientes de Eviation y meses de trabajo de ingeniería.

Las características introducidas en el diseño de la Aeronave de Producción incluyen:

  • una sección transversal constante que reduce la cantidad de piezas de Alice y los costos de fabricación, al tiempo que permite futuras variantes de la aeronave
  • segmentos estructurales diseñados para ser reensamblados en campo con herramientas estándar disponibles para los servicios de Mantenimiento, Reparación y Revisión (MRO)
  • un compartimento de Sistema de Almacenamiento de Energía (ESS) más grande y centralizado sobre el ala que puede integrar una variedad de soluciones ESS ahora y en el futuro, además de agilizar la certificación
  • espacio de cabina optimizado que permite un compartimento de almacenamiento de equipaje de mano montado lateralmente único en la clase de pasajeros

Creando el Futuro del Vuelo
Con pedidos que superan los US$ 5 mil millones, la aeronave totalmente eléctrica Alice está abriendo una nueva era de viajes aéreos sostenibles. Las versiones de pasajeros y carga de 9 asientos de Alice están diseñadas para deleitar a los clientes y pasajeros con tecnología innovadora y un diseño hermoso, al tiempo que ofrecen viajes punto a punto sin emisiones de carbono, rentables y convenientes.

«Completar la Revisión de Diseño Conceptual es un paso importante en el camino de Alice, acercándonos significativamente a la certificación de la aeronave y la Entrada en Servicio», dijo Andre Stein, CEO de Eviation. «Las últimas mejoras han mejorado aún más el diseño excepcional de Alice, que ha recibido pedidos de operadores de todo el mundo interesados en descarbonizar sus flotas. Este es un año emocionante para Eviation, ya que Alice avanza enormemente hacia hacer realidad comercial la revolución de la aviación eléctrica».

Sikorsky apunta a los rotores basculantes y a la electrificación

Los primeros intentos de helicóptero de alta velocidad de Sikorsky fueron el X2 o el Raider. Helicópteros compuestos, con dos rotores contrarrotatorios y una hélice impulsora. Por eso, hasta ahora hablar de aeronaves de rotores basculantes o convertiplanos era hablar de Bell, con su Osprey o su Valor, o de Leonardo, antes Augusta, y su modelo 609. Y ahora tenemos que añadir también a Sikorsky, que acaba de presentar su modelo de rotor basculante.

Las aeronaves conocidas como convertiplanos tratan de aunar en un solo desarollo lo mejor de los aviones y lo mejor de los helicópteros, permitiendo el vuelo a punto fijo, como en un helicóptero, y pero con la economía de combustible de crucero de un avión. Pero la velocidad de crucero queda limitada por las grandes palas de los rotores.

Cuando la punta de pala alcanza velocidad supersónica la hélice pierde eficiencia, y debido a la combinación de velocidad de rotación de la hélice/rotor más la de traslación de la aeronave, la velocidad de un avión de hélice está limitada. Y debido a que el radio del rotor es mucho mayor que el de una hélice, la velocidad lineal de la punta de pala es mucho mayor, y por tanto el límite de velocidad de vuelo del helicóptero, o del convertiplano, es mucho menor que el de un avión con hélice.

La propuesta de Sikorsky no se limita sólo a una aeronave con dos rotores, sino a toda una familia, con distintos grados de electrificación, con convertiplanos de mayor tamaño y con helicópteros.

La electrificación de las aeronaves permite utilizar motores de bajo mantenimiento y alta fiabilidad, como son los eléctricos. Elimina la necesidad de pesados reenvíos y reductoras. Pero además dota de flexibilidad al desarollador, facilitando el cambio de fuente de energía, bien un generador eléctrico conectado a una turbina de gas, bien una pila de combustible, una de hidrógeno, distintas configuraciones de baterías… Y de paso intentar consumir menos, y ser más verdes. Pero de momento, sólo tenemos unas imágenes creadas por ordenador.

Nota de prensa

ANAHEIM, California, 27 de febrero de 2024 – Sikorsky, una compañía de Lockheed Martin (NYSE: LMT), presentó hoy su plan para construir, probar y volar un demostrador de despegue y aterrizaje vertical híbrido-eléctrico (HEX / VTOL) con una configuración de ala basculante.

El diseño es el primero en una serie de grandes aeronaves VTOL de próxima generación, que van desde helicópteros más tradicionales hasta configuraciones VTOL con alas, que contarán con diferentes grados de electrificación y un sistema avanzado automatismos para vuelo opcionalmente pilotado.

“Nunca dejamos de innovar en Sikorsky”, dijo el presidente de Sikorsky, Paul Lemmo. “La autonomía y la electrificación traerán un cambio transformador a la seguridad de vuelo y la eficiencia operativa de grandes aeronaves VTOL. Nuestro programa demostrador HEX proporcionará ideas valiosas mientras buscamos una futura familia de aeronaves construidas a la escala y configuraciones preferidas relevantes para clientes comerciales y militares”.

El programa HEX pondrá énfasis en un alcance superior a las 500 millas náuticas a alta velocidad, menos sistemas mecánicos para reducir la complejidad y costos de mantenimiento más bajos.

Sikorsky Innovations, el grupo de prototipado de la compañía, y GE Aerospace están finalizando diseños para construir una plataforma de pruebas de sistemas de energía híbrido-eléctricos con un motor eléctrico de 600KW. La plataforma de pruebas es un primer paso para evaluar el rendimiento en vuelo estacionario del demostrador HEX siguiente, una aeronave de peso máximo al despegue de 9,000 libras con un turbogenerador de clase 1.2MW y electrónica de potencia asociada.

“Dentro del pilar eléctrico de Sikorsky, estamos diseñando motores eléctricos, electrónica de potencia y nuestro propio hardware de gestión de vehículos y actuación”, dijo Igor Cherepinsky, director de Sikorsky Innovations. “HEX integrará estos componentes, mostrará la creciente madurez de nuestro conjunto de autonomía MATRIX™ y el potencial de sistemas sin necesidad de mantenimiento. Ver los resultados nos llevará a diseños más eficientes en general”.

Sikorsky Innovations se formó en 2010 para superar los desafíos tecnológicos de la velocidad, autonomía e inteligencia de las alas rotatorias. Conozca más sobre los logros del equipo de ingeniería en estas áreas de enfoque tecnológico y su nuevo enfoque en la electrificación y la automatización.

El demostrador hibdridoeléctrico con propulsión distribuida de Daher, Airbus y Safran, realiza su primer vuelo con las baterías a bordo.

Ecopulse, es un avión Daher modificado para contar con motopropulsión híbrida y distribuida

La aviación eléctrica y la híbrida vienen apareciendo con cierta frecuencia en estas páginas desde hace unos años. En este caso se trata de un prototipo fabricado por Airbus, Daher y Safran, sobre un avión turbohélice de Daher.

Cuenta con un turbohélice tradicional, más seis motores distribuidos a lo largo de la envergadura del ala y una batería de gran capacidad. La distribución de los motores en el ala recuerda a la que han usado en el Antonov 2, o en la Cub híbrida-eléctrica.

La propulsión distribuida tampoco es nueva en este blog. Permite soplar la capa límite del ala, aumentando la sustentación y haciendo más corta la carrera de despegue, como ya pudimos comprobar en el vídeo del An-2 despegando en poco más de 30m.

La instalación de hélices en el borde marginal nos hace sospechar que también desean ensayar a contrarrestar el torbellino de punta de ala, reduciendo así la resistencia aerodinámica. La nota de prensa nos deja ver otra utilidad que van a ensayar en esta aeronave, que es el control de la misma mediante el empuje asimétrico de los motores. Esto puede favorecer un menor consumo, pues no sería necesario «pisar pedal» para contrarrestar el par del motor, manteniendo así el estabilizador y el timón de dirección sin deflectar, reduciendo la resistencia aerodinámica del conjunto durante el vuelo. Adicionalmente, si permitiera un control efectivo de la aeronave podría, a su vez, permitir desarrollar superficies de control más pequeñas, reduciendo a su vez aún más la resistencia aerodinámica.

También va a permitir ensayar en sí el concepto de propulsión híbrida, aunque Airbus ya tiene experiencia en ello.

En este primer vuelo, el despegue se ha realizado con el motor turbohélice. Los motores eléctricos no se han encendido hasta encontrarse a una altitud de vuelo de seguridad, como es de esperar en estos primeros ensayos, donde se comienza probando el encendido y apagado de los motores, su alimentación y otros parámetros relacionados con la seguridad. En siguientes ensayos se espera que realicen los despegues con todos los motores en marcha.

Por lo pronto el avión ha realizado su primer vuelo, esperaremos impacientes los resutlados de la campaña de ensayos.

Detalle del ala, con la propulsión distribuida y las lanas que permiten observar el comportamiento del aire

Vamos con la nota de prensa

El demostrador EcoPulse realiza su primer vuelo con las baterías a bordo.

EcoPulse es un avión demostrador de propulsión híbrida distribuida desarrollado en colaboración por Airbus, Daher y Safran. Diseñado para aprender y perfeccionar los componentes tecnológicos de los sistemas de propulsión híbrido-eléctrica para aviones futuros, EcoPulse alcanzó un hito cuando el demostrador despegó en su primer vuelo de prueba.

Después de un par de años viajando regularmente entre Tarbes y Toulouse para supervisar el desarrollo de EcoPulse, el líder del proyecto, William Llobregat, se encontró de nuevo en el lugar en noviembre de 2023 con su equipo y los de Daher y Safran. ¿La ocasión? El primer vuelo de prueba de EcoPulse. «Este proyecto se lanzó en 2019», dice Llobregat, un arquitecto de propulsión de próxima generación. «Es realmente emocionante haber llegado a la etapa concreta del proyecto donde estamos probando en vuelo las tecnologías que hemos desarrollado».

El primer vuelo marca el comienzo de una campaña de pruebas de vuelo de ocho meses de los sistemas de propulsión híbrido distribuido y las tecnologías asociadas, dirigida por Daher. Un sistema de propulsión híbrido-eléctrico combina una batería de alta tensión con una turbomáquina equipada con un generador eléctrico, y el aspecto distribuido significa que hay múltiples «módulos» de propulsión distribuidos a lo largo de las alas.

La hibridación es un área de inversión importante para Airbus, ya que las estimaciones muestran que podría reducir la huella ambiental de una aeronave hasta en un 5%. El primer vuelo de EcoPulse, con el sistema de propulsión híbrido funcional a bordo, marca así un paso importante y concreto en el avance de la hoja de ruta de electrificación de la compañía.

Un hito para el vuelo híbrido-eléctrico

EcoPulse despegó para su vuelo de prueba inaugural desde el pintoresco Aeropuerto de Tarbes-Lourdes-Pyrénées, ubicado al pie de la cordillera de los Pirineos en el suroeste de Francia. Dos pilotos de ensayos de Daher estaban a bordo del demostrador, un avión turbohélice modificado Daher TBM 900. Mientras el despegue y el aterrizaje utilizaron el motor de propulsión tradicional, el sistema de propulsión híbrida se activó a altitud de crucero, donde los pilotos pasaron alrededor de 20 minutos realizando secuencias de pruebas en la batería mientras esta alimentaba el vuelo.

Todos los aspectos de los diferentes sistemas, desde la forma en que la aeronave responde hasta la forma en que se utilizan las fuentes de energía, fueron previamente simulados digitalmente y probados por los pilotos en tierra. Estos datos teóricos ahora pueden compararse con los datos reales de las pruebas de vuelo para ayudar a los equipos a mejorar y perfeccionar el simulador y mejorar el rendimiento de los diferentes componentes tecnológicos innovadores.

¿Qué componentes tecnológicos, podrías preguntar? Airbus, Daher y Safran dividieron las responsabilidades de desarrollar las diferentes tecnologías de EcoPulse en base a sus competencias complementarias. Las contribuciones de Airbus al demostrador son el desarrollo de la batería de alta densidad de energía que alimenta los propulsores; la integración aerodinámica y acústica del sistema de propulsión distribuido; y el desarrollo de un sistema informático de control de vuelo.

«Los demostradores tecnológicos como EcoPulse desempeñan un papel clave en el avance de la hoja de ruta de descarbonización de nuestra industria», dice Llobregat. «Los demostradores en sí no están destinados a entrar nunca en servicio, pero nos permiten evaluar, perfeccionar y validar tecnologías individuales que luego se pueden integrar en aviones futuros».

Airbus aporta su experiencia a componentes clave de EcoPulse.

De las tres principales contribuciones tecnológicas de Airbus, el sistema de batería puede ser el más innovador. Como las baterías de automóviles para vehículos eléctricos son demasiado pesadas y voluminosas para su uso en la industria aeroespacial, y las baterías ya utilizadas en aviones suelen ser de baja tensión, Airbus Defence and Space tuvo que diseñar a medida la batería de alta tensión de EcoPulse.

«El sistema de batería puede alcanzar 800 voltios de corriente continua y entregar hasta 350 kilovatios de potencia», dice Llobregat. «Estamos siendo pioneros con nuevos niveles de tensión para la industria aeroespacial y esperamos integrar esta tecnología en aviones comerciales en el futuro».

La batería es lo suficientemente potente como para impulsar hasta seis propulsores eléctricos.

Airbus también modificó la forma del avión para evaluar el impacto en el rendimiento de tener un sistema de propulsión distribuida.

«Tenemos fuentes de propulsión separadas y más pequeñas distribuidas en el ala. Esto significa que teóricamente podrías aumentar la fuerza de empuje solo en los motores exteriores o solo en los centrales. Luego podemos evaluar cómo estas diferencias afectan el rendimiento de vuelo, lo cual es información muy valiosa», explica Llobregat. «Utilizar el empuje asimétrico para controlar el avión es una tecnología totalmente nueva que solo es posible probar porque estamos utilizando un sistema eléctrico que tiene una mejor respuesta dinámica que los motores de combustible a reacción tradicionales».

La creación de un sistema informático de control de vuelo también fue responsabilidad de Airbus. El software vincula todos los sistemas de control de vuelo y los conecta a los motores eléctricos, monitorizando la propulsión.

Optimiza el empuje y minimiza el efecto de la resistencia en las puntas de las alas, y también tiene en cuenta una palanca de control adicional en la cabina, así como un botón de apagado de emergencia que devuelve inmediatamente el demostrador a un avión normal con un motor convencional.

El primer vuelo de prueba del demostrador EcoPulse con el sistema de batería a bordo Sentando las bases para el vuelo con batería

Las pruebas de vuelo del demostrador durarán hasta mediados de 2024 como máximo y comprenderán hasta 30 vuelos de prueba. ¿El objetivo final de los equipos involucrados? Que cada empresa logre sus respectivos objetivos al finalizar el proyecto. «Esta asociación entre Airbus, Daher y Safran, tres empresas francesas, funcionó tan bien porque se basó en nuestra ambición común de allanar el camino hacia la descarbonización de la industria aeroespacial europea», dice Llobregat. Como uno de los principales objetivos del proyecto de Airbus era probar una nueva configuración de batería de alta tensión en vuelo, la campaña de pruebas es el emocionante resultado de cuatro años de trabajo.

Sin embargo, el desarrollo del sistema de batería se remonta aún más atrás, con la batería EcoPulse beneficiándose de varios años de investigación y prototipado previos en Airbus y Airbus Helicopters.

Las pruebas de vuelo de este sistema de batería de última generación, ligero y compacto, con alta tensión y densidad de energía, proporcionarán datos valiosos para respaldar el objetivo de Airbus de aplicar sistemas de propulsión híbrida en futuros aviones o helicópteros.

¡Si bien EcoPulse puede ser una aeronave pequeña, su impacto potencial en la industria de la aviación es enorme!

El dirigible del Co-fundador de Google tiene luz verde de la FAA para el primer vuelo

Sergey Brin, co-fundador de Google, fundó LTA (lighter than air) Research con intención de crear dirigibles que pudieran transportar personas o bienes en zonas remotas con malas comunicaciones y/o en caso de desastres naturales.

LTA ha estado diseñando y construyendo este dirigible de última generación en los últimos años. Su estructura está formada por mamparos de titanio y barras de fibra de carbono, y estará propulsado por 12 motores eléctricos.

Y gracias a IEEE sabemos que la FAA le ha concedido en septiembre un certificado de aeronavegabilidad especial, lo que significa que en breve empezará los ensayos en vuelo.

El certificado permite a LTA volar el Pathfinder 1 dentro de los límites de Moffett Field y el espacio aéreo del vecino aeropuerto de Palo Alto, a una altura de hasta 460 metros (1500 pies). Esto le permitirá aventurarse sobre el sur de la Bahía de San Francisco, sin interferir con los aviones que entran o salen de los aeropuertos comerciales de San José y San Francisco International.

El enorme dirigible inicialmente estará sujeto a un mástil de amarre móvil para pruebas en tierra al aire libre, antes de realizar 50 horas de vuelo a lo largo de unos 25 vuelos.

Doce motores eléctricos distribuidos en los laterales y la cola del dirigible impulsarán al dirigible, que alcanzará velocidades de hasta aproximadamente 120 kilómetros por hora. Una resistente capa de material laminado de Tedlar forma el revestimiento de la aeronave, y contiene en su interior 13 bolsas de helio de nylon ripstop. Estas bolsas tienen instalados sistemas lidar, para controlar el nivel de gas de su interior.

Pathfinder 1 cuenta con un sistema motor híbrido, con dos generadores diésel de 150 kilovatios que trabajan junto a 24 baterías para proporcionar energía a los motores eléctricos, según una reciente presentación del CEO de LTA, Alan Weston. Él afirmó que LTA tiene planes de utilizar hidrógeno en futuras versiones del dirigible, tal vez como combustible para futuras celdas de combustible o motores.

Aunque el Pathfinder 1 está diseñado para ser operado por un solo piloto, cuenta con doble-mando y, según la carta de LTA a la FAA, tendrá un segundo piloto a bordo «para las pruebas de vuelo iniciales hasta que se pueda evaluar la carga de trabajo del piloto». La góndola que LTA está utilizando para el dirigible fue diseñada por la famosa compañía Zeppelin en Alemania y puede acomodar hasta 14 personas, aunque durante las pruebas no se permitirán pasajeros.

Con una longitud de 407 pies (124 metros) y un diámetro de 66 pies (20 metros), es considerablemente más largo que el Airlander 10, aunque tiene menos de la mitad de su anchura, lo que le convierte en el mayor dirigible construido en los Estados Unidos desde el Makom. Puede que no califique como la aeronave más grande del mundo, pero sigue siendo absolutamente enorme, aproximándose al doble de la longitud de un Airbus A380. Y aun así, tan solo es una prueba de concepto de lo que vendrá después, el Pathfinder 3: Un dirigible de 984 pies (300 metros). Esto es incluso más grande que los gigantescos dirigibles de la clase Hindenburg de 804 x 135 pies (245 x 41 metros) de la década de 1930, que siguen siendo hasta el día de hoy las aeronaves más grandes jamás construidas.

En última instancia, LTA tiene la intención de utilizar sus aeronaves para misiones humanitarias, transportando carga y personal a áreas inaccesibles por carretera. Brin dirige una organización sin fines de lucro independiente de LTA, llamada Global Support and Development, que ya ha llevado a cabo dichas misiones por mar, en el Caribe, América Latina y el Pacífico Sur.

Comentarios

Si bien es cierto que la necesidad de infraestructuras necesarias para dar soporte en tierra a este tipo de aeronaves son escasas, sería interesante saber cómo se piensan solventar los problemas típicos de los dirigibles, que son algo difíciles de manejar en tierra y hace falta anclarlos. De hecho, por ese motivo en la última oleada que hubo de regreso al dirigible se apostaba por aeronaves híbridas, donde el 80% de la sustentación venía del helio y el resto de la forma de fuselaje sustentador de la aeronave.

Fuentes