En diciembre de 2020 os presentábamos esta aeronave, aunque entonces apenas pasaba de ser una maqueta de túnel de viento y algunas descripciones. Ahora ha sido presentada en MAKS una maqueta a tamaño real. Se espera que las pruebas de vuelo comiencen este año, y que un segundo prototipo se una en 2022, para entrar en servicio en 2023.
Como adelantamos el año pasado, el prototipo lleva un motor estadounidense General Electric, en concreto el modelo H80-200, pero en el futuro será reemplazado por el ruso VK-800S. Según Flight Global, la aeronave tendría un futuro desarrollo híbrido eléctrico. Y no descartaríamos el hidrógeno.
Según los estudios, el peso en vacío es hasta 2.4 veces inferior al del Antonov con alas de fibra de carbono que presentaron, así que entre eso y el nuevo ala pueden pasar de una configuración biplano a una monoplano con riostras perfiladas para mejorar la aerodinámica. El fuselaje se mantiene similar al original del An-2.
Se ha decidido eleminar el uso de materiales compuestos de todos los elementos estructurales y utilizar aluminio, manteniendo el material compuesto al mínimo, para tener un avión duro, todo terreno. ¡Ah! Y mantiene la tradición de las aeronaves que se diseñaban para operar en todas las latitudes de la antigua URSS, está preparado para operar entre los -55ºC y los +50ºC.
El AirCar, de Klein Vision, ha dado un paso más para aproximarse a su comercialización. El 28 de junio realizó un vuelo de 35 minutos entre los aeropuertos internacionales de Nitra y Bratislava,un trayecto de unos 100km que por carretera dura aproximadamente una hora.
El piloto de pruebas fue, como de costumbre, Stefan Klein, que declaró una velocidad de crucero de 170km/h.
Antes de conseguir su certificado de aeronavegabilidad, el aparato debe superar las 50 horas de ensayos en vuelo. Klein Vision está preparando un segundo prototipo, en el que se corrigen algunos puntos del diseño, según la experiencia obtenida en los vuelos de prueba del primero, y un motor más potente.
Según la revista eslovaca Auto, Klein habría declarado que el mercado para este vehículo no es el europeo, sino el de los países con infraestructuras viales menos desarrolladas y con distancias muy grandes entre puntos.
Para leer más sobre el vehículo, el quinto coche volador de Stefan Klein, así como sobre el propio Stefan, podéis hacerlo en esta entrada que le dedicamos en octubre de 2020.
El coche volador de Terrafugialleva apareciendo en prensa, y en este blog, periódicamente desde hace una década. Lejos de ser el coche volador del futuro que iba a estar disponible de forma inmediata, como parecía que vendían algunos medios, ha seguido un desarrollo lento. Y aunque en 2012 ya volara el prototipo de lo que sería la aeronave-coche de serie y se anunciara que en un año comenzarían las entregas, y en 2013 anunciaran una variante VTOL, uno de los primeros vehículos aéreos urbanos de despegue vertical que tan de moda se han puesto en los últimos tiempos, a veces la realidad es un poco más tozuda, y no ha sido hasta enero de 2021 que han anunciado en nota de prensa que por fin el vehículo ha conseguido de la FAA un certificado especial como Light Sport Aircraft o LSA.
A estas alturas creo que no hace falta recordar que para conducirlo será necesario el carnet de conducir y para volarlo la licencia pertinente de vuelo. Y que como avión debe cumplir todas las normas que cumple cualquier avión, y por tanto nada de salir del atasco literalmente volando, sino buscando un aeródromo del que despegar.
Durante un año de pandemia extremadamente desafiante, nuestro equipo se mantuvo concentrado, mejoró nuestro sistema de calidad, completó los aspectos críticos del diseño, construyó el vehículo, completó 80 días de pruebas de vuelo, entregó 150 documentos técnicos y pasó con éxito la auditoría de la FAA, un gran logro que genera impulso en la ejecución de nuestra misión de entregar el primer automóvil volador práctico del mundo.
Kevin Colburn, vicepresidente y director general de Terrafugia.
Dentro de los numerosos estudios que hay para encontrar una solución para los aviones del futuro, ésta es la última de Airbus,dentro de sus iniciativas ZEROe: un avión con una estructura de fuselaje convencional, ala alta, y seis góndolas autocontenidas: motor eléctrico, movido por una pila de hidrógeno, más el depósito para este gas, el equipo auxiliar, el sistema de refrigeración, y el paquete electrónico que ayuda a controlar y regular todo.
Recurre por tanto a una de las configuraciones que discutimos cuando analizamos el hidrógeno como combustible, con los depósitos cilíndricos alargados bajo el ala, pero aprovechando esta góndola para colocar el motor, dándole una apariencia más convencional que otros que hemos visto en los que motores y depósitos están en góndolas separadas.
La solución de la pila de hidrógeno no se ha escalado a gran tamaño, y con esta propuesta Airbus pretende distribuir la tecnología de pila de combustible que ya existe y escalarlo mediante la vieja táctica de poner más motores. La instalación en góndolas permite escalar el sistema agregando o eliminando góndolas, y además facilita el mantenimiento o incluso el repostaje.
La configuración adoptada por Airbus es la que hemos venido viendo en otros proyectos en las últimas entradas, como en las propuestas de CleanSky, la de Embraer, o el británico HERA, la llamada Propulsión distribuida.
Antes de continuar con este concepto, vamos a explicar otro. La fuerza con la que se mueve un reactor hacia adelante se llama empuje. El empuje se puede expresar como el gasto másico de aire que pasa por el motor multiplicado por la velocidad del aire. El rendimiento del motor está relacionado con el incremetno de velocidad que se le da al aire. Cuanto mayor es el incremento, menor rendimiento, así para aumentar el empuje de forma eficiente lo único que queda es aumentar el gasto másico que atraviesa el motor. Por eso los motores de los aviones tiene cada vez diámetros más grandes, con carenados enormes, o incluso sin carenados (concepto Open rotor o Propfan).
La propulsión distribuida busca precisamente esto. Muchos motores eléctricos moviendo muchas hélices o muchos ventiladores, para lograr el mismo efecto que en los actuales motores con un motor enorme. ¿por qué no mover ahora con un motor de combustión muchos ventiladores o hélices? Porque las transmisiones mecánicas tienen muchas pérdidas. Pero con el motor eléctrico queda solucionado.
Así pues parece que después de haber vivido una reducción paulatina de la cantidad de motores, hasta tal punto que hemos vivido la muerte de los grandes cuatrimotores, parece que el futuro pasa por la vuelta a los aviones con muchos motores.
Sin embargo, si se ha pasado de cuatro motores a tan solo dos por motivos de economía de mantenimiento, ¿por qué multiplicar ahora el número de motores?
En el caso de los motores de hélices instalados para soplar sobre las alas se nos ocurren varios motivos.
Este tipo de instalación permite soplar la capa límite, energizándola, haciendo que permanezca adherida más tiempo, y de este modo asegurando despegues más cortos y mayores ángulos de ataque. Esto favorece que la pista sea más corta, y un ángulo de subida más pronunciado, que minimiza el impacto sonoro sobre las poblaciones.
Otra de las ventajas que se tiene al utilizar hélices de pequeño diámetro es que los fenómenos de compresibilidad de punta de pala asociados con las altas velocidades de giro y altos cruceros tardan más en aparecer.
En el caso de los ventiladores entubados una de las ventajas es, como con las hélices, un funcionamiento más silencioso, y por su instalación es posible que hagan llegar menos ruido a al cabina, teniendo en cuenta que normalmente aparecen instalados te dal manera que la propia ala podría apantallar el ruido en cabina.
A la pregunta de por qué reducir el número de motores por ahorrar en mantenimiento y ahora volver a aumentarlos, se nos ocurren dos posibles respuestas:
En general la fiabilidad de los motores eléctricos es altísima, y el número de averías escaso, así pues es posible que el coste del mantenimiento pase a un plano secundario frente a las ventajas
O bien, la pista nos la da una de las frases que aparece en la nota de prensa de Airbus, es una forma rápida de escalar estas soluciones a aeronaves de mayor tamaño, demostradores tecnológicos de momento, sin la necesidad de desarrollar grandes motores eléctricos y que a su vez pesen poco para reemplazar a los actuales.
Además al ser motores de pequeño tamaño es más sencillo producirlos, así que tal vez el coste de bajo mantenimiento de motor eléctrico más coste ahorrado por producir motores de tamaño pequeño, que necesitan instalaciones más sencillas y menos utillaje y equipo de soporte, sea suficiente como para terminar resultando más económico que grandes motores.
Avions Mauboussin era una compañía francesa de los años 30, que producía aviones ligeros y de carreras. La historia comienza en 1928, con el Peyret-Mauboussin PM X, un monoplaza ligero con el que se rompieron unos cuantos records. Durante los años 30 produce varios aviones ligeros, de ala baja, del estilo de los que se llevaban en aquella época. En el 36 se une a Fouga. En la Segunda Guerra Mundial casi desaparece, aunque hace algunos planeadores junto con Fouga. Y en los 50 desarrolla el famoso Fouga Magister. Se retiró en 1967, y ahora su nombre se vuelve a asociar a la aviación con los dos conceptos que podemos ver arriba.
El primero se trata de una STOL (de despegue y aterrizaje cortos) aeronave de pasajeros, de cuatro motores con una disposición poco habitual, en punta de plano, dos empujando y dos tirando. Los depósitos que podemos ver a mitad del plano son depósitos de hidrógeno.
La otra aeronave se trata de una aeronave biplaza, más convencional, con un motor de combustión y uno eléctrico. El motor eléctrico le permitiría despegar de forma más silenciosa (o eso dicen, a nuestro entender casi todo el ruido en despegue procederá de la hélice y de los flaps).
Y en ambos casos parece que apuestan por el uso de materias renovables, como el uso de la madera para realizar los materiales compuestos, o bioresinas. Al fin y al cabo, las fibras de la madera embebidas en la lignina se comportan como la fibra de carbono embebida en la resina. ¿O era al revés?
No hay muchos más datos disponibles, esperemos que avancen en el proyecto y vayan publicando más cosas. Como ya dijimos, en su día todo parecía que funcionaría con biocombustibles, ahora estrenamos la era del hidrógeno. Esperemos que avancen por el buen camino.