[Vídeo] El Do 228 de ZeroAvia vuela por primera vez con hidrógeno y queroseno

El Dornier Do228 de ZeroAvia ha realizado su primer vuelo en el aeropuerto de Costwold. El vuelo ha durado 10 minutos y ha consistido en carreteo, despegue, un circuito estándar al rededor del aeropuerto y aterrizaje.

El avión no ha volado única y exclusivamente con hidrógeno. En su ala izquierda se había reemplazado el turbohélice por un motor eléctrico, alimentado por pila de hidrógeno, con un paquete de baterías de litio que proporcionan energía extra para los momentos críticos del vuelo, cuando más potencia se necesita.

En su ala derecha el avión montaba su Honeywell TPE-331 de serie.

Aunque las imágenes del modelo que nos han mostrado en otras ocasiones llevaba los depósitos de hidrógeno montados de forma externa, bajo las alas alas, durante este vuelo se ha vaciado el interior del avión para instalar todos los equipos necesarios para ensayos en vuelo así como los tanques de hidrógeno, baterías y sus sistemas asociados.

Esperamos ver pronto el avión en vuelo íntegramente propulsado por hidrógeno, pues esperan que entre en servicio en 2025.

Los primeros vuelos con hidrógeno de ZeroAvia se produjeron hace seis años, en una Piper Malibú. El primer avión con pila de hidrógeno voló de mano de Boeing en 2009 en Cuatro Vientos, mientras que el primer vuelo de un avión con hidrógeno fue el Bee Project en 1956. Airbus ha desvelado hace relativamente poco un motor que funciona con pila de hidrógeno, y es que se está apostando fuertemente por este combustible para descarbonizar la aviación.

Fuente: ZeroAvia

Northrop Grumman y la NASA se asocian para integrar las aeronaves no tripuladas en el espacio aéreo

Northrop Grumman está colaborando con la NASA para desarrollar y probar soluciones para integrar grandes sistemas de aeronaves no tripuladas en el espacio aéreo estadounidense.

El esfuerzo se centrará en las operaciones de carga aérea y es parte del subproyecto Pathfinding for Air Traffic Management-eXploration (ATM-X) de la NASA para el espacio aéreo con vehículos autónomos. Este trabajo incluirá la coordinación con la FAA, revisiones de preparación de vuelo y desarrollo de un plan de prueba para simulaciones y demostraciones de vuelo.

Al asociarnos con la NASA, detallaremos los requisitos y las soluciones para hacer posible que las aeronaves autónomas, en este caso de carga aérea, se integren sin problemas y de manera segura en el espacio aéreo nacional. Nuestro trabajo conjunto mejorará el acceso al espacio aéreo y transformará la forma en que se utilizan los sistemas no tripulados para transportar mercancías a través de los EE. UU.

Tom Jones, vicepresidente corporativo y presidente de Northrop Grumman Aeronautics. Sistemas

Nota de prensa vía Spacewar

Boeing y la NASA construirán un prototipo de «airliner» con alas arriostradas de gran alargamiento

Visión artística del demostrador del airliner del futuro, con ala super esbelta y arriostrada

En el intento de lograr reducir las emisiones de la aviación, Boeing y la NASA han lanzado un proyecto de 425 millones de dólares para diseñar y fabricar un avión demostrador de lo que podría ser el avión de aerolínea del futuro.

Este avión mantiene la forma clásica de fuselaje de tubo, e incorpora un ala de gran alargamiento arriostrada. El ala de gran alargamiento reduce la resistencia inducida, y la riostra hace posible esta gran envergadura sin subir en exceso el peso de la unión al fuselaje, o encastre.

Alas de tal envergadura podrían requerir mecanismos de plegado, cual avión de portaaviones, si superasen las envergaduras para las que están diseñados actualmente los aeropuertos.

Para los que esperaban un avión del futuro con forma de ala volante, explicar que mantener la forma de tubo tiene sentido dado que en un ala volante la presurización es compleja, el tiempo de evacuación podría crecer, las posiciones de los asientos más alejadas de la línea central del avión podrían ser incómodas para los pasajeros durante distintas maniobras, además de que la logística aeroportuaria, incluidas terminales, están diseñadas para aviones de fuselaje tipo tubo. Así pues no es sorprendente que se mantenga esta configuración de tubo y ala.

También podemos observar en el modelo que la flecha del ala, la inclinación hacia atrás de la misma, es menor, de lo que se infiere unas menores velocidades de crucero. Por la forma del ala y la posición de los motores en él se abre la posibilidad a nuevas motorizaciones, desde turbofanes de más alto índice de derivación a turbohélices avanzados o incluso conceptos de rotor abierto.

SUGAR en túnel de viento
Avión de Marcel Hurel comparado con el Sugar.

El avión es una evolución del que ya ensayaran en túnel de viento en 2016, y recuerda al concepto de diseño de Marcel Hurel, y os aconsejamos la lectura de estos dos artículos nuestros que os acabamos de enlazar para ampliar información.

Vamos ahora con la nota de prensa de Boeing

Nota de prensa de Boeing

– La NASA, Boeing y sus socios tienen como objetivo reducir el uso de combustible y las emisiones hasta en un 30 % en aviones de pasillo único

– Los avances en tecnología sostenible son cruciales para alcanzar el objetivo de la aviación civil de tener cero emisiones netas de carbono para 2050

La NASA seleccionó a Boeing  para liderar el desarrollo y las pruebas de vuelo de un demostrador tecnológico del concepto Transonic Truss-Braced Wing (TTBW).

Las tecnologías demostradas y probadas como parte del programa Demostrador de vuelo sostenible (SFD) proporcionarán información imprescindible para los diseños futuros , que podrían conducir a avances aerodinámicos y de eficiencia de combustible.

Cuando se combina con los avances esperados en los sistemas de propulsión, los materiales y la arquitectura de los sistemas, un avión de pasillo único con una configuración TTBW podría reducir el consumo de combustible y las emisiones hasta en un 30 % en relación con los aviones de pasillo único más eficientes de la actualidad, dependiendo del perfil del vuelo. El programa SFD tiene como objetivo promover el compromiso de la industria de la aviación civil de alcanzar cero emisiones netas de carbono para 2050, así como los objetivos establecidos en el Plan de Acción Climática de la Aviación de EE. UU. de la Casa Blanca.

Las alas ultra esbeltas arriostradas de gran alargamiento, podrían eventualmente acomodar motores  más avanzados, cuyo uso ahora queda restringido por la falta de espacio debajo del ala en las configuraciones actuales. Para el vehículo de demostración, Boeing utilizará elementos de vehículos existentes y los integrará con componentes completamente nuevos.

La financiación de la NASA a través del Acuerdo de la Ley Espacial SFD asciende a 425 millones de dólares. El programa SFD también aprovechará hasta $ 725 millones en fondos de Boeing y sus socios de la industria para dar forma al programa de demostración y satisfacer las necesidades de recursos requeridas. Por separado, las inversiones internas anteriores de Boeing para las fases recientes de investigación de aviación sostenible totalizan $ 110 millones.

El concepto de fuselaje TTBW es el resultado de más de una década de desarrollo respaldado por la NASA, Boeing y las inversiones de la industria. Bajo programas anteriores de la NASA, incluido el programa Subsonic Ultra Green Aircraft Research de la agencia, Boeing realizó extensas pruebas en túneles de viento y modelado digital para avanzar en el diseño del TTBW. Los primeros estudios conceptuales comenzaron bajo el programa de Aviación Ambientalmente Responsable de la NASA.

Y ya sabéis, si os ha gustado la entrada, ¡seguidnos!

eVTOL: los números no salen

No es la primera vez que criticamos los eVTOL, o que recogemos lo que otros medios han publicado sobre su viabilidad o su cerficabilidad. Hoy vamos a intentar resumir los datos económicos que han publicado en distintos artículos Leehan News y Aviation Week.

La movilidad aérea urbana sigue dando de qué hablar. Cada vez hay más aeronaves que se aproximan a la certificación. Y por fin parece que aparecen voces críticas con este “nuevo” medio de transporte en los medios especializados. Algunos, como Leeham News, han sido críticos siempre. Otros han publicado muchas notas de prensa pero sin hacer ninguna crítica a la misma, y ahora parece que empiezan a analizar números. Vamos a intentar resumir todos esos números que han ido haciendo en estos medios. Todo el artículo, y las críticas de estos medios podrían resumirse en una sola pregunta: ¿Si tan alta es la demanda de este tipo de servicios, por qué no se está cubriendo ya con helicópteros ligeros?¿Son realistas son los planes comerciales de sus operadores?

Lilium, que tiene como objetivo redefinir el transporte aéreo urbano y regional, en especial cubriendo rutas que están “desatendidas”. Espera que su Lilium Jet para seis pasajeros pueda ofrecer un precio de 2.25$/asiento-milla mientras opera 10 h. por día. Muchos aviones de fuselaje ancho tienen suerte si logran este nivel de utilización, y Lilium planea hacerlo con vuelos mucho más cortos (el alcance de su avión es de 155 millas).

Las hipótesis de Volocopter para su VoloCity de dos pasajeros son igualmente poco realistas. El eVTOL de 18 rotores, diseñado para vuelos urbanos cortos, tiene un alcance de poco más de 20 millas y costes de asiento-milla similares a los del Lilium Jet. Su utilización anual estimada es de 3000 h por año, comparable a un avión de pasajeros de pasillo único.

Otro eVTOL de los que parece que van a ser certificados en breve y que se puede tomar en serio es el Joby S4, un avión para cuatro pasajeros con una velocidad de 200 mph y un alcance de 150 millas. El precio anticipado por asiento y milla de Joby es de aproximadamente 3$ con una utilización anual de 2500 horas, más que un avión regional típico.

Otra startup, Archer, fue noticia en noviembre cuando United Airlines anunció planes para lanzar su primera ruta eVTOL en Nueva York en 2025, uniendo el Aeropuerto Internacional Newark Liberty y el centro de Manhattan utilizando su nuevo avión Midnight.

¿Por qué estos planes comerciales iniciales incluyen niveles de utilización tan elevados? Porque ese nivel de utilización tan alto es indispensable para que el negocio sea viable, si no es improbable que se amorticen los altos precios de los eVTOL que, a razón de 2-4 M$, son sustancialmente más altos que los helicópteros convencionales. ¡Un Robinson R44 –cuatriplaza- cuesta menos 0.5M$! Si hay tanta demanda acumulada de este servicio, ¿por qué no se cubre el mundo con taxis aéreos R44?

La situación huele a lo que el director gerente de AeroDynamic Advisory, Richard Aboulafi, llama la espiral de vida insostenible: alguien ofrece un producto o servicio con costos unitarios increíblemente bajos. Estos costos bajos se basan en tasas de producción increíblemente altas o suposiciones de utilización increíblemente altas. Estos números increíblemente altos de utilización/producción se basan a su vez en costos unitarios increíblemente bajos. Vamos, maquillar números para demostrar que un negocio inviable sí lo es.

El concepto de trasladar pasajeros de centros urbanos concurridos a aeropuertos no es nuevo. ¡Si ya se pensó en poner una terminal multimodal con autogiros incluidos en el Madrid de los años 30! New York Airways conectó el centro de Manhattan con JohnF. Kennedy, Newark, Teterboro Airport y White Plains Airport desde 1956 hasta 1979 antes de que los accidentes los llevaran a la bancarrota. También en Bruselas podíamos ver en el centro mismo de la ciudad un helipuerto para conexiones rápidas entre ciudades cercanas.

Después de un paréntesis de 40 años, este servicio resurgió recientemente gracias a Blade, que transporta a 12000 pasajeros al año entre el centro de la ciudad y los aeropuertos JFK y Newark con helicópteros convencionales. El valor añadido de este servicio es convincente. Reemplaza un viaje de 2h y 100$ en Uber, taxi o similar por un vuelo de 5 minutos y 195$. El coste operativo directo por vuelo es de aproximadamente$ 500$, (de los cuales 200$ son tasas).

Blade planea hacer la transición de helicópteros convencionales a eVTOL. Su gerencia anticipa que la nueva tecnología inicialmente permitirá una modesta reducción en los costos de vuelo en rutas clave y espera mayores ahorros con el tiempo a medida que se reduzcan los costos de la batería. Ese mismo vuelo Midtown-JFK tendrá costos operativos directos de $430, una reducción del 14%. Esto no es lo suficientemente revolucionario como para respaldar el crecimiento del mercado eVTOL previsto a decenas de miles de millones de dólares para 2030 ni permite los bajos costes que se anuncian para los pasajeros. Tan sólo permite reemplazar los helicópteros que ya prestan un servicio equivalente. Pero, aunque el coste operativo por vuelo sea más bajo, el coste de adquisición de la aeronave es muy superior. El punto de equilibrio es delicado.

Airbus ensaya su A321XLR en un vuelo de 13h15min. La FAA le pide que modifique sus tanques de combustible extra.

Ayer Airbus realizó un vuelo de ensayos con su A321XLR, como pudo seguirse en FR24. Y, de paso, aprovecharon a dibujar en el cielo las letras XLR, que corresponden a eXtra Long Range, o alcance extra largo. El vuelo consistió en permanecer 13h 15 minutos en el aire, demostrando así su autonomía.

El A321 es la variante más larga de la familia A320. Ya vuela su variante LR, es decir, largo alcance (o Largo Radio, y así mantenemos las siglas). Y su variante XLR, un desarrollo del 321neo, tendrá las piernas aún más largas… si el alcance de un A321neo convencional es de ~6000km, el alcance del A321XLR será de ~8700km.

Conceptualmente, este avión es justo lo contrario que un A380. Si el A380 está pensado para cubrir grandes distancias entre hubs y, a partir de ellos, volar con aviones más pequeños que distribuyan el tráfico, el 321XLR es un avión ya pequeño que permite volar punto a punto de forma directa (ver filosofía punto a punto vs hub-spike). Y, actualmente, es el único reemplazo viable para los añejos 757.

La FAA requiere cambios de diseño en los tanques de combustible extra

La FAA, durante el análisis de riesgos del nuevo A321XLR previo a su certificación, ha identificado dos riesgos potenciales relacionado con su depósito central adicional. Éste se sitúa directamente bajo los pasajeros.

Uno de los riesgos tiene que ver con la comodidad del pasaje situado sobre el depósito, por un indebido aislamiento térmico, el combustible podría actuar como refrigerante, trasladando al pasaje ese frío.

El otro, mucho más grave, el riesgo de incendio.

Resumiendo la noticia aparecida en Flight Global:

Al ser áreas que no estaban previstas originalmente para transporte de combustible, el aislamiento térmico y el apantallamiento frente a las llamas puede ser insuficiente.

“Los accidentes han ilustrado la amenaza que existe debido al derrame de combustible de los tanques de combustible de los aviones dañados que resultan en incendios que penetran en la cabina”, afirma una circular de asesoramiento de la FAA sobre la instalación de aislamiento. El aislamiento térmico y acústico, dice, puede retrasar el inicio de un incendio en la cabina durante un período de tiempo «suficiente» para permitir la evacuación de los pasajeros.

Según la FAA, el diseño actual consta de paneles aislantes entre la parte superior del depósito y el piso de la cabina para contribuir al confort térmico de los pasajeros. Pero el espacio limitado y la necesidad de ventilación y de mantener los paneles de descompresión cercanos libres de obstrucciones significan que la estructura del avión no puede cumplir con los estándares de aislamiento.

“Específicamente, la FAA requerirá que la mitad inferior del fuselaje del avión, que abarca el área longitudinal del tanque, sea resistente a la penetración del fuego”, afirma.

La FAA propone que esta resistencia sea «equivalente» a la que se habría proporcionado si el fuselaje estuviera equipado con un aislamiento térmico y acústico normal, agrega, para abordar la «vulnerabilidad» de quemado. Tal resistencia podría lograrse a través de la construcción del propio tanque de combustible, dándole propiedades inherentes de penetración de llama.

Boeing ha presentado comentarios a la FAA con respecto a la solicitud de Airbus de condiciones especiales para el tanque A321XLR, solicitando que la capacidad de resistencia al fuego del tanque trasero del A321XLR sea equivalente a la los depósitos del ala, argumentando que la propuesta de la FAA, basada en la equivalencia con el aislamiento térmico del fuselaje, «no aborda» los peligros asociados con el combustible. tanques

Pero la FAA ha rechazado esto, afirmando que las condiciones especiales «no están destinadas» a garantizar que el tanque central trasero esté construido para garantizar una resistencia al fuego similar a la del área de la caja del ala, y que las condiciones especiales ya abordan las vulnerabilidades específicas del diseño del tanque de fuselaje del A321XLR.