Hoy empezamos lo que queremos que llegue a ser una serie: mujeres hablando de mujeres, de pioneras, de aviadoras. Llevamos años escribiendo y hablando sobre aviadoras. Pero aún así sabemos que son grandes desconocidas tanto entre el público masculino como el femenino. Así que hemos querido que sean ellas las que pongan voz a estas historias y cuenten desde su punto de vista historias que, hasta la grabación del podcast, desconocían.
En este episodio la periodista Karma Peiró nos va a hablar de la cara más desconocida de Josephine Baker, habitualmente conocida como bailarina, pero no como aviadora o espía. Y También nos hablará del grupo del que formó parte, las IPSA (Infirmières Pilotes Secouristes de l’Air – Enfermeras Piloto Socorristas del Aire).
pd: Si la intro y la despedida os son familiares, que no os sorprenda. En un ejercicio de nostalgia podcasteril he hablado con Javier Lago para pedirle permiso y utlizar la introducción que hizo para el que, si no recuerdo mal, fue el primer podcast español sobre aviación: Remove Before Flight RBF podcast
Recordáis el nuevo turbohélice de Embraer, hemos hablado en varias ocasiones de él, la última aquí. Pues Embraer acaba de hacer público un vídeo, con algunos detalles más. Lo dejamos bajo estas líneas.
Las reacciones en las redes sociales a este nuevo sistema de Airbus tampoco se han hecho esperar, y varían desde los que están entusiasmados con el sistema a los que opinan que con el precio de un A400M se adquieren tres Canadair 415; los que consideran que el A400M es demasiado pesado para operar en terreno montañoso, y recuerdan el desastroso debut del 747 de Evergreen en España, y los que opinan que para dar soporte a los botijos trabajando en segunda línea, lejos del fuego, sin atacarlo directamente, podrían ser útiles; y por supuesto los que defienden la capacidad de un anfibio de repostar en una lámina de agua que se encuentre cercana al incendio y contraponen que el A400M, como avión terrestre, tendría que ser repostado en una base terrestre, con herramientas y útiles específicos.
Pero nosotros nos vamos a centrar tan solo en los sistemas paletizados que montan ambos aviones.
Lo primero, sería aclarar que los Hércules de la Guardia Nacional pueden montar dos sistemas paletizados, el MAFFS y el MAFFS II, o de segunda generación.
En el caso de los tres sistemas hablamos de sistemas paletizados, y que por tanto pueden montarse y desmontarse con facilidad y rapidez. Además al ser un accesorio de conversión externo y paletizado, permite que el avión mantenga sus otras capacidades, y que el resto del año pueda realizar sus funciones habituales, mientras que en temporada crítica de incendios da soporte a las aeronaves dedicadas en exclusiva a esta labor.
El primer MAFFS consistía en varios depósitos junto con unos acumuladores de aire comprimido. El agua era descargada a través de dos toberas traseras que asomaban por la rampa de carga.
El segundo MAFFS también es paletizado, pero necesita una pequeña modificación en las puertas traseras del Hércules para dar cabida a las toberas. Al contrario que el sistema anterior, en lugar de llevar acumuladores de aire comprimido monta compresores de aire, con lo que en tierra solo necesita repostar agua o agua con retardante, y no aire comprimido. El tener que modificar la puerta lateral trasera es una clara desventaja. Sin embargo presenta otras ventajas, como estar instalado en una posición más avanzada, más cercana al centro de gravedad. La otra es que, parece ser, con el primitivo sistema MAFFS el avión quedaba impregnado a menudo de agua y retardante, lo que hacía que tras finalizar el vuelo hubiera que hacer una concienciuda limpieza al avión para evitar problemas posteriores de corrosión y de mantenimiento, y con la nueva disposición el avión se ve menos afectado por este efecto.
En el caso del A400M, el sistema paletizado tiene una situación retrasada, como en el caso del MAFFS I. Hay pocos, por no decir ningún, dato disponible acerca de este sistema. Lo que sí podemos ver en las imágenes del vídeo es que el agua es claramente proyectada contra la zona trasera del fuselaje, lo que puede llevar a problemas como los descritos anteriormente, de tareas adicionales de limpieza y mantenimiento para evitar problemas de corrosión.
Seguiremos atentos las noticias del A400M apagafuegos, y esperamos que tenga más éxito como bombero que el C-295.
Hubo una época en la que la energía nuclear fascinó al mundo, y se creyó que podría ser la energía barata y limpia que salvara al planeta… (bueno, eso ahora sí es factible). Por eso se intentó «nuclearizar» todo, desde barcos (con mucho éxito) a coches. También se intentó con los aviones nucleares, tanto por parte estadounidense [pdf] como por parte soviética [pdf].
Lo que tal vez no sea tan conocido es que también los franceses lo tuvieron en mente, ni más ni menos que para motorizar su posible avión de pasajeros supersónico Super Caravelle.
No confundir el reactor supersónico llamado Super Caravelle con la versión agrandada del Caravelle que heredaría este nombre cuando el proyecto del Super Caravelle supersónico quedó fusionado con el proyecto británico para dar como resultado el Concorde.
Los más fieles seguidores del blog seguro que recuerdan el Super Caravelle de cuando explicamos la historia de los padres del Concorde, así que no nos entretendremos mucho presentándolo e iremos directos a por su desarrollo nuclear.
El proyecto se dio a conocer en un folleto de Sud Aviation de 1958. Junto con los dibujos del Super Caravelle con motor convencional, había otros proponiendo la motorización nuclear.
En la imagen superior se puede observar la disposición del reactor nuclear, así como las posiciones de las turbinas. También se aprecia en la imagen frontal que el número de las ruedas se ha doblado, con carretones de cuatro para el tren principal y carretón de dos para el de morro. Esto se debe a que se preveía reforzar el tren de aterrizaje, puesto que en un avión con combustible convencional el peso al aterrizar es mucho inferior al peso al despegar (por eso cuando hay un problema eyectan o gastan el combustible antes de aterrizar), mientras que en el avión nuclear el peso al despegue y al aterrizaje sería el mismo.
El folleto también incluía una vista de la disposición de la cabina, aunque sin muchas explicaciones de qué instrumentos nuevos debería incorporar o qué cambios había que introducir respecto a una cabina de pilotaje tradicional.
Se contemplaron, como en el caso estadounidense y el soviético, motores de flujo abierto y de flujo cerrado. En el primero, el aire calentado por el reactor es expulsado a la atmósfera a alta velocidad. Aunque de funcionamiento más sencillo y estructura más ligera, se consideró poco adecuado puesto que liberaba material radioactivo a la atmósfera y exigía un blindaje extra para los ocupantes del avión. El otro sistema, el de flujo cerrado, utiliza un intercambiador de calor intermedio, haciendo que el material radiactivo nunca salga del circuito. Aunque es un concepto más pesado, evitaba el lanzamiento de material radioactivo a la atmósfera y además hacía que el avión necesitara menos blindaje antiradiactivo.
Los cálculos de fluidos consumen muchos recursos de memoria. Normalmente se recurren a muchos trucos para reducir el tiempo o los recursos necesarios para resolver un modelo, como aplicar simetrías. Por ejemplo, se modela solo el lado izquierdo del modelo y se indica al ordenador que el plano de simetría es como un espejo y que todo lo que ocurra al otro lado es exactamente lo mismo. Otras soluciones pasan por reducir la resolución o aplicar matemáticas avanzadas para resolver las ecuaciones de forma más rápida. Y eso es lo que ha hecho Moritz Lehmann. Y, para demostrarlo, ha creado este espectacular modelo de un X-Wing con 1250 millones de nodos
De la descripción del video, para los más avanzados:
Esta es la simulación CFD más grande jamás realizada en una sola GPU, la potente AMD Instinct MI250 (solo en 1 GCD con 64 GB*).
La MI250 es en realidad 2 GPU (GCD) completamente independientes en un solo zócalo con 64 GB de memoria cada uno. Un GCD no puede acceder directamente a la memoria del otro.
La simulación de 50k pasos tomó 104 minutos a una resolución de 1076 × 2152 × 538, más 40 minutos para renderizar video 4x 30s 1080p.
¿Cómo es posible exprimir 1250 millones de puntos de red en solo 64 GB? Gracias a estos tres papers: