Un hidroavión «utilitario» que sobrevivió al ataque de Pearl Harbor

Maqueta que representa el 1-J-1. Foto de Hyperscale

El año pasado os contábamos la historia de las aviadoras (y los aviadores) desconocidos de Pearl Harbor. Este año os traemos la historia de un avión de esos que, normalmente, pasaría bastante desapercibido. No es un gran caza, ni un bombardero. Es más bien algo así como un camión con alas de la US Navy, un autobús hidroavión utilizado como estafeta, carga, enlace, evacuación médica (medevac)

La importancia histórica del Sikorsky JRS-1, variante del que se fabricaron 17 unidades para la USN del S-43 «Baby Clipper», un avión gris-azulado desgastado que ahora se exhibe el Centro Steven F. Udvar-Hazy en Chantilly, Virginia, no se debe a las misiones que realizaba. Es más bien un aparato de segunda línea, dedicado a operaciones logísticas. Pero es todo un superviviente del ataque de la Marina Imperial Japonesa a Pearl Harbor, el 7 de diciembre de 1941.

Este JRS-1 es uno de los tres aviones que todavía existen que estuvieron en Pearl durante el ataque, y el único avión en la colección del Smithsonian que estuvo allí. El VJ-1, al que pertenecía este avión, fue asignado a Hawai. En septiembre de 1939 llegó un primer destacamento, y en junio 1940 llegó lo que quedaba del escuadrón, para servir principalmente en las funciones de búsqueda y rescate en el mar y transporte médico. Otras funciones del escuadrón eran entrenar a la flota en el uso de sus armas antiaéreas, remolcar blancos aéreos, fotografía, recuperación de torpedos, entrenamiento de cazas en la interceptación de aviones, calibración de de radar y radio, cobertura submarina para protección durante maniobras y pruebas, observación artillera, objetivos de prácticas para los operadores de radar, transporte de personal y correo, patrulla aérea y cobertura de convoyes…

El área de Ford Island en la que se encontraba el VJ-1 no resultó dañada durante el ataque a Pearl Harbor, por lo que todos sus Baby Clippers y J2F Grumman Ducks sobrevivieron. El escuadrón llegó a contar con hasta cuatro JRS-1.

KIRKOSKY JRS-1 FLYING BOAT
S/NREG.MARKINGSSTRICKENREMARKS
4329#05041-J-111-43To VJ-1RIGEL 7-37. Pearl Habror 7-41. NAS San Diego 11-42. To VJ-1 7-43.
4330#05051-J-2 To VJ-1 San Diego. Crxd 12-31-38.
4331#05061-J-311-43To VJ-1 San Diego. To PH detachment of VJ-1 8-40.
4338#1055 7-23-43To VJ-1 San Diego RIGEL 6-6-38.
Tabla de aviones según la página web de la historia del escuadrón

Poco después del ataque, la US Navy ordenó que los aviones y las tripulaciones de VJ-1 entraran en acción a pesar de no estar capacitados ni equipados para el combate. Según parece, y según cuentan los supervivientes del VJ-1, las tripulaciones despegaron con observadores adicionales, armados con sus propias armas, para ser utilizadas como medio defensivo de último recurso en caso de encontrarse con aviones japoneses. Su misión era, simplemente, intentar detectar a la fuerza japonesa y transmitir su posición, antes de ser derribados. Además, sirvió de aparato de fotorreconocimiento, tomando muchas de las fotografías aéreas de Hawai tras el ataque.

En sus primeros días, el JRS-1 estaba pintado de plateado con alas superiores de un brillante amarillo cromado y un casco negro. Una cola verde sauce lo identificaba como perteneciente al VJ-1. Los números en el costado son 1-J-1, el primer avión del VJ-1. Una gran franja roja cerca de las puertas traseras del avión, que todavía se puede ver hoy, significaba que este era un avión de comandante. La US Navy prefería un avión pintado con colores vivos por varias razones. Si se viera obligado a aterrizar, por ejemplo, sería más fácil para un avión de búsqueda y rescate (o SAR, por sus siglas en inglés)..

La pintura también ayudaba a comunicar lo que hacía el avión y quién estaba en él, particularmente importante porque las radios aún comunes durante los años 30. De hecho, el VJ-1 recibió sus primeras radios en 1936, hasta entonces usaban medios tan avanzados como hacer señales con focos. Los aviones más grandes tendrían un conjunto de radio completo, pero un avión de caza probablemente solo tendría una radio de corto alcance como máximo. Por lo tanto, los colores en el avión estaban destinados a describir información práctica: las tareas del avión, a qué escuadrón pertenecía y quién podría estar en él.

Después de sobrevivir al ataque, permaneció en Pearl Harbor hasta 1943, cuando se le hizo un overhaul y se volvió a poner en servicio como un avión personal asignado al comandante de la Fleet Airship Wing 31, con base en Moffett Field en California. Después de la guerra, fue reconfigurado como parte de un proyecto de investigación realizado por la NACA para mejorar los diseños de los cascos de las hidrocanoas. Después fue enviado a almacenamiento en Bush Field en Georgia. Cuando el avión estaba inactivo en Bush Field, el piloto de ferry estaba hojeando las entradas del libro de vuelos del avión, cuando una fecha en particular llamó su atención: el 7 de diciembre de 1941. Después de eso, se contactó al Museo y lo entregaron al Smithsonian en 1960.

Fuente: Smithsonian, VJ-1 History

El demostrador hibdridoeléctrico con propulsión distribuida de Daher, Airbus y Safran, realiza su primer vuelo con las baterías a bordo.

Ecopulse, es un avión Daher modificado para contar con motopropulsión híbrida y distribuida

La aviación eléctrica y la híbrida vienen apareciendo con cierta frecuencia en estas páginas desde hace unos años. En este caso se trata de un prototipo fabricado por Airbus, Daher y Safran, sobre un avión turbohélice de Daher.

Cuenta con un turbohélice tradicional, más seis motores distribuidos a lo largo de la envergadura del ala y una batería de gran capacidad. La distribución de los motores en el ala recuerda a la que han usado en el Antonov 2, o en la Cub híbrida-eléctrica.

La propulsión distribuida tampoco es nueva en este blog. Permite soplar la capa límite del ala, aumentando la sustentación y haciendo más corta la carrera de despegue, como ya pudimos comprobar en el vídeo del An-2 despegando en poco más de 30m.

La instalación de hélices en el borde marginal nos hace sospechar que también desean ensayar a contrarrestar el torbellino de punta de ala, reduciendo así la resistencia aerodinámica. La nota de prensa nos deja ver otra utilidad que van a ensayar en esta aeronave, que es el control de la misma mediante el empuje asimétrico de los motores. Esto puede favorecer un menor consumo, pues no sería necesario «pisar pedal» para contrarrestar el par del motor, manteniendo así el estabilizador y el timón de dirección sin deflectar, reduciendo la resistencia aerodinámica del conjunto durante el vuelo. Adicionalmente, si permitiera un control efectivo de la aeronave podría, a su vez, permitir desarrollar superficies de control más pequeñas, reduciendo a su vez aún más la resistencia aerodinámica.

También va a permitir ensayar en sí el concepto de propulsión híbrida, aunque Airbus ya tiene experiencia en ello.

En este primer vuelo, el despegue se ha realizado con el motor turbohélice. Los motores eléctricos no se han encendido hasta encontrarse a una altitud de vuelo de seguridad, como es de esperar en estos primeros ensayos, donde se comienza probando el encendido y apagado de los motores, su alimentación y otros parámetros relacionados con la seguridad. En siguientes ensayos se espera que realicen los despegues con todos los motores en marcha.

Por lo pronto el avión ha realizado su primer vuelo, esperaremos impacientes los resutlados de la campaña de ensayos.

Detalle del ala, con la propulsión distribuida y las lanas que permiten observar el comportamiento del aire

Vamos con la nota de prensa

El demostrador EcoPulse realiza su primer vuelo con las baterías a bordo.

EcoPulse es un avión demostrador de propulsión híbrida distribuida desarrollado en colaboración por Airbus, Daher y Safran. Diseñado para aprender y perfeccionar los componentes tecnológicos de los sistemas de propulsión híbrido-eléctrica para aviones futuros, EcoPulse alcanzó un hito cuando el demostrador despegó en su primer vuelo de prueba.

Después de un par de años viajando regularmente entre Tarbes y Toulouse para supervisar el desarrollo de EcoPulse, el líder del proyecto, William Llobregat, se encontró de nuevo en el lugar en noviembre de 2023 con su equipo y los de Daher y Safran. ¿La ocasión? El primer vuelo de prueba de EcoPulse. «Este proyecto se lanzó en 2019», dice Llobregat, un arquitecto de propulsión de próxima generación. «Es realmente emocionante haber llegado a la etapa concreta del proyecto donde estamos probando en vuelo las tecnologías que hemos desarrollado».

El primer vuelo marca el comienzo de una campaña de pruebas de vuelo de ocho meses de los sistemas de propulsión híbrido distribuido y las tecnologías asociadas, dirigida por Daher. Un sistema de propulsión híbrido-eléctrico combina una batería de alta tensión con una turbomáquina equipada con un generador eléctrico, y el aspecto distribuido significa que hay múltiples «módulos» de propulsión distribuidos a lo largo de las alas.

La hibridación es un área de inversión importante para Airbus, ya que las estimaciones muestran que podría reducir la huella ambiental de una aeronave hasta en un 5%. El primer vuelo de EcoPulse, con el sistema de propulsión híbrido funcional a bordo, marca así un paso importante y concreto en el avance de la hoja de ruta de electrificación de la compañía.

Un hito para el vuelo híbrido-eléctrico

EcoPulse despegó para su vuelo de prueba inaugural desde el pintoresco Aeropuerto de Tarbes-Lourdes-Pyrénées, ubicado al pie de la cordillera de los Pirineos en el suroeste de Francia. Dos pilotos de ensayos de Daher estaban a bordo del demostrador, un avión turbohélice modificado Daher TBM 900. Mientras el despegue y el aterrizaje utilizaron el motor de propulsión tradicional, el sistema de propulsión híbrida se activó a altitud de crucero, donde los pilotos pasaron alrededor de 20 minutos realizando secuencias de pruebas en la batería mientras esta alimentaba el vuelo.

Todos los aspectos de los diferentes sistemas, desde la forma en que la aeronave responde hasta la forma en que se utilizan las fuentes de energía, fueron previamente simulados digitalmente y probados por los pilotos en tierra. Estos datos teóricos ahora pueden compararse con los datos reales de las pruebas de vuelo para ayudar a los equipos a mejorar y perfeccionar el simulador y mejorar el rendimiento de los diferentes componentes tecnológicos innovadores.

¿Qué componentes tecnológicos, podrías preguntar? Airbus, Daher y Safran dividieron las responsabilidades de desarrollar las diferentes tecnologías de EcoPulse en base a sus competencias complementarias. Las contribuciones de Airbus al demostrador son el desarrollo de la batería de alta densidad de energía que alimenta los propulsores; la integración aerodinámica y acústica del sistema de propulsión distribuido; y el desarrollo de un sistema informático de control de vuelo.

«Los demostradores tecnológicos como EcoPulse desempeñan un papel clave en el avance de la hoja de ruta de descarbonización de nuestra industria», dice Llobregat. «Los demostradores en sí no están destinados a entrar nunca en servicio, pero nos permiten evaluar, perfeccionar y validar tecnologías individuales que luego se pueden integrar en aviones futuros».

Airbus aporta su experiencia a componentes clave de EcoPulse.

De las tres principales contribuciones tecnológicas de Airbus, el sistema de batería puede ser el más innovador. Como las baterías de automóviles para vehículos eléctricos son demasiado pesadas y voluminosas para su uso en la industria aeroespacial, y las baterías ya utilizadas en aviones suelen ser de baja tensión, Airbus Defence and Space tuvo que diseñar a medida la batería de alta tensión de EcoPulse.

«El sistema de batería puede alcanzar 800 voltios de corriente continua y entregar hasta 350 kilovatios de potencia», dice Llobregat. «Estamos siendo pioneros con nuevos niveles de tensión para la industria aeroespacial y esperamos integrar esta tecnología en aviones comerciales en el futuro».

La batería es lo suficientemente potente como para impulsar hasta seis propulsores eléctricos.

Airbus también modificó la forma del avión para evaluar el impacto en el rendimiento de tener un sistema de propulsión distribuida.

«Tenemos fuentes de propulsión separadas y más pequeñas distribuidas en el ala. Esto significa que teóricamente podrías aumentar la fuerza de empuje solo en los motores exteriores o solo en los centrales. Luego podemos evaluar cómo estas diferencias afectan el rendimiento de vuelo, lo cual es información muy valiosa», explica Llobregat. «Utilizar el empuje asimétrico para controlar el avión es una tecnología totalmente nueva que solo es posible probar porque estamos utilizando un sistema eléctrico que tiene una mejor respuesta dinámica que los motores de combustible a reacción tradicionales».

La creación de un sistema informático de control de vuelo también fue responsabilidad de Airbus. El software vincula todos los sistemas de control de vuelo y los conecta a los motores eléctricos, monitorizando la propulsión.

Optimiza el empuje y minimiza el efecto de la resistencia en las puntas de las alas, y también tiene en cuenta una palanca de control adicional en la cabina, así como un botón de apagado de emergencia que devuelve inmediatamente el demostrador a un avión normal con un motor convencional.

El primer vuelo de prueba del demostrador EcoPulse con el sistema de batería a bordo Sentando las bases para el vuelo con batería

Las pruebas de vuelo del demostrador durarán hasta mediados de 2024 como máximo y comprenderán hasta 30 vuelos de prueba. ¿El objetivo final de los equipos involucrados? Que cada empresa logre sus respectivos objetivos al finalizar el proyecto. «Esta asociación entre Airbus, Daher y Safran, tres empresas francesas, funcionó tan bien porque se basó en nuestra ambición común de allanar el camino hacia la descarbonización de la industria aeroespacial europea», dice Llobregat. Como uno de los principales objetivos del proyecto de Airbus era probar una nueva configuración de batería de alta tensión en vuelo, la campaña de pruebas es el emocionante resultado de cuatro años de trabajo.

Sin embargo, el desarrollo del sistema de batería se remonta aún más atrás, con la batería EcoPulse beneficiándose de varios años de investigación y prototipado previos en Airbus y Airbus Helicopters.

Las pruebas de vuelo de este sistema de batería de última generación, ligero y compacto, con alta tensión y densidad de energía, proporcionarán datos valiosos para respaldar el objetivo de Airbus de aplicar sistemas de propulsión híbrida en futuros aviones o helicópteros.

¡Si bien EcoPulse puede ser una aeronave pequeña, su impacto potencial en la industria de la aviación es enorme!

Airbus sigue mejorando y ensayando su kit para convertir el A400M en un avión de lucha antiincendios

A400M liberando retardante en la D17 de Uceda

En julio nos hacíamos eco (y publicábamos también el vídeo) de los ensayos realizados por Airbus con su A400M en el norte de Guadalajara, concretamente en Uceda, equipado con un sistema paletizado que permitía convertirlo en un avión de lucha antiincendios. En agosto, además, lo comparábamos con el sistema MAFFS utilizado por los Hércules y adaptado también al C-390. Hoy sabemos que Airbus continúa mejorando y ensayando el sistema y, por lo que se ve en las fotos, también en Uceda.

El A400M y su «chassing plane» en los ensayos anteriores

Si comparamos la imagen de los últimos ensayos y la comparamos con la imagen de la nota de prensa del verano, podemos comprobar que el líquido, en esta ocasión, se separa del fuselaje del avión, evitando acumulación de material potencialmente corrosivo en la estructura. Esta fue una de las principales pegas que encontramos a este sistema, similar al MAFFS I, en su día. La salida de líquido se producía por el portalón y bañaba toda la cola, haciendo casi obligatoria la limpieza de la aeronave tras cada uso, para evitar inicios de corrosión. En las nuevas imágenes, aparentemente, han logrado solucionar este problema. La ventaja de este sistema es que, como el MAFFS I y al contrario que el MAFFS II, no necesita ningún tipo de modificación estructural en el avión.

La apuesta de Airbus es clara. Europa está cada vez más preocupada por los grandes incendios forestales, que nos visitan cada vez más a menudo, con más virulencia, y durante más tiempo. De hecho Airbus no es la única empresa interesada en el desarrollo de grandes aviones cisterna contra el fuego, no podemos olvidar a Keppler y su apuesta por el A-330. Y, aunque como hemos dicho en las entrevistas con Manuel Gálvez, ex piloto del 43, y Jose Luis García Gallego, piloto antiincendios en helicópteros, lo ideal es el mantenimiento preventivo antes que el correctivo, no está de más equiparse con aviones antiincendios.

Por lo que hemos hablado con ambos pilotos, expertos en la materia, estas aeronaves pueden crear cortafuegos, pero no serían aptas para un ataque directo del fuego, y mucho menos para combatirlo en valles cerrados o con grandes gradientes de altitud, como pudiera ser el caso de Canarias.

En España, y en general en Europa, aunque en esto de la lucha antiincendios forestales podemos presumir de estar muy a la cabeza y por delante del resto de los países europeos, no se ha utilizado habitualmente este tipo de aeronaves de gran tamaño, más habituales en países como Canadá, Estados Unidos o Australia. Estamos acostumbrados a otras tácticas anti-incendios, me remito una vez más a la entrevista con Manuel de Gálvez, y por eso no se han empleado este tipo de aeronaves. Si bien el aumento de la criticidad de los incendios, de su tamaño y de su voracidad, bien podrían justificar su inclusión en las campañas antiincendios, aunque habría que desarrollar desde cero una doctrina para su utilización y encajarlos dentro de las formaciones que ya vuelan, entender dónde y cómo crear esos cortafuegos, y establecer cómo deben coordinarse con los medios más pequeños, más maniobreros y más aptos para atacar directamente el frente de las llamas.

La parte positiva es que al ser un sistema paletizado, se puede instalar con facilidad en todos los A400M que están volando con las fuerzas aéreas europeas. Además el A400M tiene capacidad STOL y de aterrizar en pistas no preparadas, lo que facilitaría su dispersión por las pistas forestales ya existentes. Al menos en cuanto a longitud de pista se refiere, habría que hacer un estudio de a cuántas pistas queda limitado su uso, realmente, debido a la envergadura. La parte negativa es que no puede cargar el líquido en las cercanía del incendio, añadiendo al tiempo entre cada dos descargas sucesivas los diez minutos de repostaje de agua con retardante y los vuelos de ida y vuelta del incendio a la base. Otro punto desfavorable es que los pilotos del A400M son pilotos de transporte militar, no de lucha antiincendios. Y los pilotos antiincendios saben volar el Canadair 415/215T, no el A400M. Así que por mucho que el aparato se pueda configurar en poco tiempo, los pilotos necesitarán un tiempo de entrenamiento y adaptación.

No obstante, y viendo la que se nos viene encima con los incendios forestales, siempre es bien recibido un nuevo aparato. Habrá que ver cómo se definen las doctrinas antiincendios y cómo se encaja un avión de semejante tamaño en ellas, y cómo se coordina con los helicópteros y los anfibios que ya operan en los incendios. Estaremos espectantes y a la espera de nuevas noticias, y nuevas charlas con nuestros amigos los pilotos «apagafuegos».

Vamos con la nota de prensa:

Airbus actualiza el kit de prototipo de extinción de incendios del A400M.

Airbus Defence and Space ha llevado a cabo una nueva campaña de pruebas de vuelo del kit de extinción de incendios Roll-on/Roll-off del A400M, soltando 20.000 litros de retardante y creando líneas de alta concentración de más de 400 metros de longitud.

Durante un período de dos semanas, el A400M llevó a cabo una campaña de pruebas en tierra y en vuelo en el suroeste y centro de España, que incluyó seis descargas, tres de las cuales utilizaron retardante de color rojo y tres utilizaron agua.

Hemos probado una nueva versión del kit, mejorando la eficiencia de la descarga y reduciendo el tiempo de descarga en más del 30% en comparación con el año pasado, al mismo tiempo que se combina con un despliegue rápido y una instalación sencilla en la aeronave A400M. Seguimos siendo pioneros en nuevas soluciones y capacidades para nuestra flota de A400M, en este caso protegiendo a las poblaciones y al medio ambiente natural de los incendios.

Jean-Brice Dumont, Jefe de Sistemas Aéreos Militares en Airbus Defence and Space

Una solución fácil de instalar

Este kit de instalación/desinstalación no requiere ninguna modificación en la aeronave y, por lo tanto, es intercambiable para cualquier aeronave de la flota A400M. El agua o el retardante se almacenan en un tanque en la bodega de carga de la aeronave y, mediante el uso de una palanca mecánica, se abre una puerta para permitir que el líquido fluya fuera de la aeronave por gravedad a través de un tubo de descarga. El diseño actual del prototipo es capaz de soltar 20.000 litros en una sola descarga.

Los tanques se pueden llenar en menos de 10 minutos utilizando bombas de alta presión estándar en tierra. El A400M se caracteriza por su capacidad para despegar y aterrizar en pistas cortas y sin pavimentar, y en una amplia gama de bases y campos de aviación.

Durante la campaña, el 43º Escuadrón de Extinción de Incendios de la Fuerza Aérea Española ha participado como asesores técnicos y asegurando que esta capacidad en el A400M tiene un valor operativo para cualquier posible operador.

En julio de 2022, Airbus probó por primera vez un kit demostrador de extinción de incendios removible en el A400M. La compañía concluyó que el kit de extinción de incendios del A400M ofrece capacidades adicionales no disponibles en el mercado gracias a su alta capacidad de descarga, alta maniobrabilidad con los últimos estándares de seguridad, operación de día y noche y la capacidad de convertir cualquier A400M regular en cualquier flota en una aeronave de extinción de incendios en muy poco tiempo.

[Podcast] Pilotos anti-incendios en helicóptero, con Jose Luis García

Ahora que estamos en otoño, casi llegando a invierno, es un gran momento para recordar al personal que lucha contra el fuego durante el verano, y de paso defender que se les mantenga durante el resto del año, puesto que es mejor prevenir que curar, porque siempre sale más barato el mantenimiento preventivo que el correctivo.

Para eso tenemos con nosotros a José Luis García, ingeniero y piloto de helicópteros, que nos cuenta cómo nació la vocación, los pasos que dio para llegar a ser piloto anti-incendios y en qué consiste su trabajo, desde el ataque al fuego al transporte de brigadistas. Esperemos que disfrutéis tanto como nosotros dos grabando.

El podcast se puede encontrar en Amazon Music, Apple Podcast, Google Podcast, Ivoox, Spotify

pd: Si la intro y la despedida os son familiares, que no os sorprenda. En un ejercicio de nostalgia podcasteril he hablado con Javier Lago para pedirle permiso y utlizar la introducción que hizo para el que, si no recuerdo mal, fue el primer podcast español sobre aviación: Remove Before Flight RBF podcast

Proyecto liderado por Honeywell utilizará inteligencia artificial para avanzar en las operaciones de piloto único en Europa

Las operaciones con un solo piloto aparecen en el blog de forma periódica. Y no es que seamos firmes defensores o detractores de las mismas. Simplemente son una realidad que está ahí, y que llegará antes o después. Personalmente, en el blog creemos que en aviación siempre se tiende a la redundancia de sistemas, y por tanto es preferible contar con dos pilotos. Pero también sabemos que el debate no es si es mejor operar con un piloto o con dos, sino cuándo va a llegar la operación con un solo piloto.

La evolución de la cabina ha ido siempre a reducir personal. Se pasó de volar con piloto, copiloto, navegador/radio e ingeniero de vuelo a tan solo los dos primeros. Y antes o después los avances de la técnica y de la legislación hará que los vuelos se operen con tan sólo un piloto.

Desde que Thales anunciara su Cockpit 3.0, la EASA anunciara que estudiaría su viabilidad, y las aerolíneas comenzaran a hablar de falta de pilotos para justificar el pedir este tipo de operaciones, o Faury dijera que el 350 carguero sería la plataforma ideal para comenzar a integrar la aviónica y las operaciones mono-piloto, la cosa ha avanzado mucho.

Parece que aquél viejo chiste de que la tripulación del futuro será un piloto y un perro, el piloto para acariciar al perro y el perro para morder al piloto si toca un sólo botón, está cada vez más cerca.

Vamos a por la nota de prensa de Honeywell:

Asistentes digitales impulsados por IA ayudarán a los pilotos a monitorear tareas y aumentar la eficiencia operativa

Honeywell (NASDAQ: HON) ha lanzado DARWIN, un proyecto liderado por Honeywell bajo el Acuerdo Conjunto SESAR 3 de la Unión Europea, para aprovechar la inteligencia artificial y avanzar en las operaciones de piloto único en Europa. La investigación se centrará en un sistema de colaboración humano-IA, definiendo roles y responsabilidades claras con los pilotos humanos como los tomadores de decisiones finales.

Los desafíos que actualmente impiden que las aeronaves de transporte aéreo sean tripuladas por un solo piloto incluyen la necesidad de mantener la carga de trabajo en la cabina lo suficientemente baja como para permitir que una persona maneje incluso las situaciones más exigentes; la necesidad de reemplazar el segundo par de ojos para verificar las acciones del piloto al mando; y la necesidad de detectar y mitigar la incapacidad de un piloto. La colaboración entre humanos y IA puede ayudar a apoyar a los pilotos en cada uno de los escenarios mencionados anteriormente.

«La necesidad de una mayor autonomía requiere una transformación digital. Para ambos, necesitamos generar confianza en las soluciones basadas en IA. DARWIN desarrollará un concepto de colaboración humano-IA escalable que pueda introducir gradualmente nuevas funciones y asistentes de piloto, de acuerdo con la hoja de ruta de IA de la EASA», dijo Jolana Dvorska, gerente senior de investigación y desarrollo y arquitecta de SESAR en Honeywell Aerospace.

«Este proyecto sienta una base sólida para el futuro de la IA y la colaboración humano-IA en la aviónica de Honeywell», dijo Andrew Barker, vicepresidente de Aviónica Integrada de Honeywell Aerospace. «Debemos enfocar nuestros esfuerzos en estas áreas para garantizar que se establezcan bases adecuadas para el futuro de las operaciones con tripulación mínima».

El proyecto DARWIN desarrollará asistentes digitales impulsados por IA y un marco de colaboración humano-IA para respaldar tanto las operaciones de tripulación mínima extendida como las operaciones de piloto único, asegurando el mismo (o mayor) nivel de seguridad y una carga de trabajo igual (o menor) que las operaciones con una tripulación completa en la actualidad. El proyecto entregará soluciones que permitan la eficiencia operativa, como el monitoreo del estado y las tareas del piloto, teniendo en cuenta la complejidad del espacio aéreo futuro.

El consorcio liderado por Honeywell está compuesto por proveedores de tecnología de la industria, fabricantes de aeronaves, institutos de investigación líderes, proveedores de servicios de navegación aérea y organismos reguladores y principales instituciones europeas. Los socios del proyecto incluyen a Pipistrel, DLR, Eurocontrol, EASA y Slovenia Control. El trabajo se llevará a cabo desde el centro de desarrollo internacional de Honeywell en Brno, República Checa.

El Acuerdo Conjunto SESAR 3 es una asociación europea institucionalizada entre socios del sector privado y público cofinanciada por la Unión Europea para acelerar la implementación del Cielo Digital Europeo a través de la investigación e innovación.