Desde hace un tiempo venimos siguiendo este desarrollo de Bombardier, llamado EcoJet, un Blended Wing Body, o BWB.
Bombardier comenzó sus investigaciones en 2018. Y ha terminado la campaña de ensayos con su primer prototipo a escala pequeña, y anuncia ya una segunda campaña de ensayos con una aeronave dos veces más grande.
No es el primer constructor que se apunta a este concepto, aunque sí es el primero que lo propone como reactor de negocios en lugar de como avión de pasajeros.
Con el EcoJet, Bombardier pretende probar distintas soluciones que reduzcan el consumo, con la participación de las universidades y actores industriales canadienses.
Esta configuración reduce mucho la resistencia, y por tanto el consumo. Y Bombardier pretende ensayar la propulsión híbrida con él. Rechazan la idea de la aviación eléctirca pura por el consabido problema de densidad energética de las baterías.
La posición de los motores, si bien tradicional en los reactores de negocios, tiene varias ventajas, como poder intercambiar con relativa facilidad el tipo de motor sin gran impacto en la estructura, o poder jugar con el concepto de ingestión de la capa límite para reducir más la resistencia.
Esperan, con el estudio de este demostrador, definir el avión de negocios del futuro.
La transición a unos aviones de bajas emisiones de CO₂ esperan lograrla basándose en cuatro puntos.
Tecnología: nuevas configuraciones de la aeronave, la introducción del hidrógeno y del combustible sostenible para aviación (SAF), la propulsión híbrida o el reciclaje.
Operaciones e infraestructura: no todas las mejoras pueden realizarse en las aeronaves. Se pueden realizar muchas mejoras en la forma de operar las aeronaves así como en las infraestructuras donde operan o con las que se le dan apoyo. Las innovaciones en los aeropuertos, en las rutas, en el mantenimiento y el servicio de las aeronaves se ensayaran en las nuevas instalaciones de Bombardier de Toronto Pearson International Airport, Mississauga.
SAF: Bombardier está trabajando en la implementación de este tipo de combustibles.
La Royal Air Force, Airbus, la agencia de Apoyo y Equipos de Defensa del Ministerio de Defensa del Reino Unido, la empresa británica de arrendamiento de aviones AirTanker y el fabricante de motores Rolls-Royce, con el combustible suministrado por Air BP, han llevado a cabo el primer vuelo del mundo 100 % con combustible de aviación sostenible (SAF) alimentando ambos motores utilizando un avión militar en servicio. También es el primer vuelo 100% SAF de cualquier tipo de avión realizado en el espacio aéreo del Reino Unido.
El avión era la variante británica del MRTT, elVoyager. Despegó el miércoles sobre RAF Brize Norton en Oxfordshire, Inglaterra, propulsado completamente con combustible de aviación 100% sostenible en ambos motores, allanando el camino para una gama de posibilidades para el futuro de volar aviones militares.
Fieles a nuestro propósito de ‘ser pioneros en la industria aeroespacial’, hemos apoyado con mucho gusto a la Royal Air Force en este histórico vuelo de prueba con combustible sostenible. Felicito a nuestro cliente del Reino Unido por este logro que ayuda a allanar el camino para una reducción sostenible de las emisiones de carbono de nuestras flotas de aviones militares. Los ingenieros de Airbus han hecho una contribución significativa a esta misión de la RAF al proporcionar experiencia en el terreno en las últimas semanas y asegurar los permisos de vuelo militares necesarios del Ministerio de Defensa”.
Michael Schoellhorn, CEO de Airbus Defence and Space
El vuelo de 90 minutos, pilotado por un equipo combinado de prueba de vuelo de Airbus, la RAF y Rolls-Royce, replicó una salida de reabastecimiento de combustible aire-aire y fue presenciado por representantes senior de la RAF y de la industria.
La RAF dijo que demostró el potencial de su futura capacidad operativa, asegurando la capacidad de contribuir a la defensa del Reino Unido donde y cuando sea necesario.
Desde la perspectiva de la tripulación, la operación del SAF fue ‘transparente’, lo que significa que no se observaron diferencias operativas. El Plan de Pruebas fue exhaustivo y robusto y nos ha permitido comparar SAF con JET1 culminando en un vuelo sin una sola gota de combustible fósil. El trabajo en equipo fue un factor clave, armonizando la experiencia de Airbus, Rolls-Royce y la RAF. Nos sentimos muy orgullosos de ser una pequeña parte de este gran paso hacia la aviación sostenible”.
piloto de pruebas experimentales y capitán del vuelo Jesús Ruiz
El SAF o biocombustible avanzado de última generación no es un combustible de origen fósil, sino que viene de materiales como residuos de cocina, plantas, y otras fuentes que se consideran sostenibles y renovables. Ese caracter sostenible y renovable hace que en lugar de ser un ciclo abierto de consumo sea lo más parecido a un ciclo cerrado. Si queréis saber más sobre él, tenemos un artículo dedicado en exclusiva para él que explica los distintos tipos de SAF que existen, como se extraen, etc: SAF (Sustainable Aviation Fuel) SC (Sin Complejos) o ¿qué es el SAF?.
Hemos mencionado los aviones Hurel Dubois dos veces en este blog. Así que ya va tocando dedicarles una entrada solo para ellos. La primera vez fue cuando presentamos el concepto de avión con ala de gran alargamiento con riostras de Boeing, y la segunda con el concepto de Airbus, que recurre a alas articuladas. Como hemos mencionado en otras ocasiones, un ala de gran alargamiento se comporta prácticamente como un ala de longitud infinita, minimizando los efectos de borde y por tanto aumentando la eficiencia del ala, reduciendo la necesidad de dispositivos de punta de ala para reducir los efectos del torbellino de punta de ala (resistencia inducida). Pero presenta varios problemas, uno es el que son demasiado esbeltas y hay que encontrar como sujetarlas al fuselaje sin que sea un sistema en exceso pesado, de ahí las riostras, o la articulación del segmento exterior, para reducir la transmisión de momentos al fuselaje. Otros problemas vienen derivados de que la gran flexibilidad del ala ocasiona no linealidades en las soluciones aerodinámicas (cuando se resuelven ciertas ecuaciones aerodinámicas aproximándolas con una serie de Fourier lo normal es quedarse solo con los primeros términos, despreciando los no lineales), así como fenómenos aeroelásticos.
Marcel Hurel es un diseñador y piloto francés. De hecho compitió en la más célebre copa de hidroaviación, como piloto de pruebas de CAMS voló su modelo 38 en el Trofeo Schneider, y se hizo famoso porque aprovechó en 1943 el primer vuelo de CAMS-Potez 161, un hidroavión examotor de 43 toneladas, para ponerlo lejos del alcance del ejército alemán, volando de la Francia ocupada a Bizerte, donde fue destruido en 1944.
Tras la guerra se asoció con Dubois, que era el socio capitalista, para diseñar el Hurel-Dubois 10. Este avión era un demostrador tecnológico para comprobar sus teorías acerca de las alas de gran alargamiento.
El alargamiento alar era de 32.5:1, más propio de un velero que de un avión a motor, ¡mucho menos de un avión de transporte! El HD-10 tenía un motor de 40HP, 12 metros de envergadura, y 480kg de MTOW, ¡prácticamente un ULM actual!. Con el motor de 75HP que se instaló después alcanzaba un crucero de 121mph. Las alas estaban construidas en aluminio-magnesio soldado, reforzadas con sendas riostras, mientras que el fuselaje era de tubo soldado revestido de tela.
Los resultados de los ensayos fueron positivos, logrando una buena sustentación con poca resistencia, y una capacidad de alabeo bastante sorprendete, a pesar de la gran envergadura que tiene. Entre 1948 y 1954 acumuló 218h 27 minutos de horas de vuelo, y actualmente se conserva en el Musée de l’Air et de l’Espace en Paris, en Le Bourget.
Monsieur Hurel tenía en mente desde el comienzo el hacer un avión de transporte, y logró que el gobiero francés apoyara su proyecto, con la construcción de dos prototipos prácticamente idénticos y que se diferenciaban tan solo en la motorización, y en que el segundo era 1.2m más largo, y la estructura reforzada: el HD-31 (F-WFKU, después F-BFKU) con los motores Wright Cyclone de 800HP y el HD-32 (F-WGVG, más tarde F-BGVG) con los Pratt and Whitney R1830 de 1200HP. El primero voló el 27 de enero de 1957, mientras que el segundo lo hizo el 29 de diciembre del mismo año.
La construcción de ambos era metálica, las alas tenian 46m de envergadura, y una relación de aspecto de 20.2:1, bastante menos que en el prototipo, pero aún así muy eficiente. En comparación, el DC-3 tenía una envergadura de 29 metros. El peso en vacío era de 11214kg, con un peso máximo al despegue de 19060kg. Con 6356kg de carga útil se le calculaba un alcance de 990km, a pesar de contar con la resistencia del tren fijo.
Del HD-32 se produciría un segundo ejemplar, el HD-321 (F-WHHA, más tarde F-BHHA), que se estrellaría el 31 de octubre del 56 en Bahía Guanabara, cerca de Río de Janeiro, en un vuelo de demostración, falleciendo una persona. El HD-32 se perdería el 10 de mayo de 1960 en un accidente en Villemoleix, saliéndose de pista. Este avión se puede ver, o se podía ver, aún allí.
El l’Institut Géographique National encargó una evolución de estos aparatos, el HD-34, con tren retráctil y morro acristalado. El primero de ellos (F-WHOO, más tarde F-BHOO) voló el 26 de febrero de 19570.
Sin embargo el avión producido en serie más exitoso que ha utilizado el concepto de Hurel es británico, el Shorts Skyvan, heredero del Miles-Hurel-Dubois HDM.105. Y visto lo visto, ¿quién dice que no puede ser el futuro de la aviación comercial?
Cuando los ingenieros copiamos, digo imitamos, a las soluciones que ya existen en la naturaleza se le llama biomímesis o biobimética. Y es que haciendo una máxima aquello de si funciona, no lo toques, lo llevamos al si funciona, cópialo. Y si ya existe en la naturaleza y lleva tal vez miles de años funcionando, ¿por qué no adaptarlo a nuestras necesidades?
Y es lo que han hecho en Airbus con el albatros. Pero vamos por pasos…