Como es habitual nos gusta felicitaros las fiestas con alguna postal clásica de Navidad y aerotrastornada clásica, y si es centenaria mejor.
Hoy a través millas ventosas esta tarjeta vuela rápido para desearos una feliz Navidad y un año nuevo inmejorable (en especial esto último, que falta nos hace)
Traducción del texto
Podéis encontrar todas las que hemos utilizado hasta ahora aquí.
Dentro de los numerosos estudios que hay para encontrar una solución para los aviones del futuro, ésta es la última de Airbus,dentro de sus iniciativas ZEROe: un avión con una estructura de fuselaje convencional, ala alta, y seis góndolas autocontenidas: motor eléctrico, movido por una pila de hidrógeno, más el depósito para este gas, el equipo auxiliar, el sistema de refrigeración, y el paquete electrónico que ayuda a controlar y regular todo.
Recurre por tanto a una de las configuraciones que discutimos cuando analizamos el hidrógeno como combustible, con los depósitos cilíndricos alargados bajo el ala, pero aprovechando esta góndola para colocar el motor, dándole una apariencia más convencional que otros que hemos visto en los que motores y depósitos están en góndolas separadas.
La solución de la pila de hidrógeno no se ha escalado a gran tamaño, y con esta propuesta Airbus pretende distribuir la tecnología de pila de combustible que ya existe y escalarlo mediante la vieja táctica de poner más motores. La instalación en góndolas permite escalar el sistema agregando o eliminando góndolas, y además facilita el mantenimiento o incluso el repostaje.
La configuración adoptada por Airbus es la que hemos venido viendo en otros proyectos en las últimas entradas, como en las propuestas de CleanSky, la de Embraer, o el británico HERA, la llamada Propulsión distribuida.
Antes de continuar con este concepto, vamos a explicar otro. La fuerza con la que se mueve un reactor hacia adelante se llama empuje. El empuje se puede expresar como el gasto másico de aire que pasa por el motor multiplicado por la velocidad del aire. El rendimiento del motor está relacionado con el incremetno de velocidad que se le da al aire. Cuanto mayor es el incremento, menor rendimiento, así para aumentar el empuje de forma eficiente lo único que queda es aumentar el gasto másico que atraviesa el motor. Por eso los motores de los aviones tiene cada vez diámetros más grandes, con carenados enormes, o incluso sin carenados (concepto Open rotor o Propfan).
La propulsión distribuida busca precisamente esto. Muchos motores eléctricos moviendo muchas hélices o muchos ventiladores, para lograr el mismo efecto que en los actuales motores con un motor enorme. ¿por qué no mover ahora con un motor de combustión muchos ventiladores o hélices? Porque las transmisiones mecánicas tienen muchas pérdidas. Pero con el motor eléctrico queda solucionado.
Así pues parece que después de haber vivido una reducción paulatina de la cantidad de motores, hasta tal punto que hemos vivido la muerte de los grandes cuatrimotores, parece que el futuro pasa por la vuelta a los aviones con muchos motores.
Sin embargo, si se ha pasado de cuatro motores a tan solo dos por motivos de economía de mantenimiento, ¿por qué multiplicar ahora el número de motores?
En el caso de los motores de hélices instalados para soplar sobre las alas se nos ocurren varios motivos.
https://player.vimeo.com/video/476222670
Este tipo de instalación permite soplar la capa límite, energizándola, haciendo que permanezca adherida más tiempo, y de este modo asegurando despegues más cortos y mayores ángulos de ataque. Esto favorece que la pista sea más corta, y un ángulo de subida más pronunciado, que minimiza el impacto sonoro sobre las poblaciones.
Otra de las ventajas que se tiene al utilizar hélices de pequeño diámetro es que los fenómenos de compresibilidad de punta de pala asociados con las altas velocidades de giro y altos cruceros tardan más en aparecer.
https://player.vimeo.com/video/470584554
En el caso de los ventiladores entubados una de las ventajas es, como con las hélices, un funcionamiento más silencioso, y por su instalación es posible que hagan llegar menos ruido a al cabina, teniendo en cuenta que normalmente aparecen instalados te dal manera que la propia ala podría apantallar el ruido en cabina.
A la pregunta de por qué reducir el número de motores por ahorrar en mantenimiento y ahora volver a aumentarlos, se nos ocurren dos posibles respuestas:
En general la fiabilidad de los motores eléctricos es altísima, y el número de averías escaso, así pues es posible que el coste del mantenimiento pase a un plano secundario frente a las ventajas
O bien, la pista nos la da una de las frases que aparece en la nota de prensa de Airbus, es una forma rápida de escalar estas soluciones a aeronaves de mayor tamaño, demostradores tecnológicos de momento, sin la necesidad de desarrollar grandes motores eléctricos y que a su vez pesen poco para reemplazar a los actuales.
Además al ser motores de pequeño tamaño es más sencillo producirlos, así que tal vez el coste de bajo mantenimiento de motor eléctrico más coste ahorrado por producir motores de tamaño pequeño, que necesitan instalaciones más sencillas y menos utillaje y equipo de soporte, sea suficiente como para terminar resultando más económico que grandes motores.
Chuck Yeager rompiendo la barrera del sonido en su X-1
Chuck Yeager rompiendo la barrera del sonido en su X-1
Chuck Yeager es uno de esos pilotos que no necesita presentación. Es el primer piloto acreditado que rompió la barrera del sonido en vuelo recto y nivelado (ya se sabe que con estos records siempre hay disputas y gente que dice que lo ha hecho antes). De hecho, aunque conocido por ser el primer hombre en romper la barrera del sonido (y lo hizo con las costillas rotas por no ceder a otro el honor de ser recordado como el primero en romper la barrera del sonido), ya era una leyenda para cuando lo hizo, por haber sido el primer piloto estadounidense de la IIGM en convertirse en un as, o ser el primero en derribar un Me-262 (la primera vez que vi un reactor, lo derribé, dijo), o en ser derribado sobre Francia y huir por tierra gracias a los maquisa España y de aquí a Reino Unido para volver al servicio activo. Yeager volaría 201 tipos de aviones, acumulando más de 14000 horas de vuelo, de las cuales unas 13000 en aviones militares, en total más de 50 años como piloto militar y de pruebas.
Chuck ha emprendido su último vuelo hacia el oeste, utilizando la jerga, a los 97 años, el mismo día, casualmente, que lo hizo el astronauta John Glenn hace 4 años. Vuele en paz.
Fr @VictoriaYeage11 It is w/ profound sorrow, I must tell you that my life love General Chuck Yeager passed just before 9pm ET. An incredible life well lived, America’s greatest Pilot, & a legacy of strength, adventure, & patriotism will be remembered forever.
Si no llega a ser porque me lo ha chivado Antonio Valencia se me hubiera pasado por alto este avión que ha presentado Embraer en un seminario de defensa.
El concepto se llama STOUT, (Short Take Off Utility Transport). Sería para reemplazar los C-95 Bandeirante y C-97 Brasilia. Pero en esta ocasión en lugar de tener configuración de ala baja tendrá la misma configuración que el KC-390, cola en T y ala alta, con puerta trasera de carga. Por tamaño es similar al CN-235. Capaz de llevar 30 soldados pertrechados o 24 paracaidistas. Con 3 toneladas de carga tendría un alcance de 2.425 km (1.310 nm). Se ha definido para que opere en entorno amazónico y pueda despegar de pistas no preparadas .
https://youtu.be/csGRoYEwSxQ
La aeronave recuerda al Embraer 500 Amazonas, diseñado en los 70, pero de menor tamaño, nace también con posibilidad de ser fabricada bien como aeronave militar de transporte táctico, bien como aeronave civil.
Las dos hélices más cercanas al fuselaje estarían movidas por motores turbohélice, mientras que las de punta de ala serían movidas por motores eléctricos. Esta disposición permite soplar la capa límite a lo largo de toda la envergadura alar, lo que favorece las prestaciones STOL del avión. Además. en caso de fallo de motor, asumimos que de fallar un motor sería el turbohélice puesto que la fiabilidad del motor eléctrico se asume más alta, el motor eléctrico de ese ala puede recibir electricidad del generador situado en el ala contrario, contrarrestando la asimetría de sustentación. Y posiblemente los motores de punta de ala sean contrarrotatorios, rotando hacia el exterior de la punta de ala, para contrarrestar de este modo el torbellino de punta de ala y disminuyendo así la resistencia inducida sin necesidad de dispositivos de barrera tipo winglet.
La otra aeronave que se estaba escapando de aparecer en el blog fue presentada en un podcast de Air Finance Journal y en twitter por Rodrigo Silva e Souza, vice presidente de márketing de la compañía y por Arjan Meijer, CEO. Las imágenes que publicó en la red social Twitter recuerda a otras aeronaves de la firma, como el EMB 120, o tal vez a un 175 bi reactor reequipado con turbohélices.
El anterior CEO dijo que este proyecto solo saldría a delante si la aventura industrial, ahora rota, Embraer-Boeing salía adelante. Sin embargo Silva dijo que el trabajo en esta aeronave continuaría en 2021, y que ya están hablando con algunos clientes.
El fundador y CEO de la compañía, Jay Skylus, dice que los cohetes no sirven para lograr un acceso rápido a la órbita baja de la tierra, el Ravn X puede lanzar su carga útil y apenas 180 minutos después estar lanzando otro, lo que según Skylus les hace los más rápidos. La necesidad de poder lanzar cargas de forma rápida y ponerlas en órbita baja ha sido identificada por el propio ejército estadounidense, United States Space Force socio y cliente de Aevum. Les permite reponer satélites que hayan dejado de funcionar, o que incluso hayan sido derribados. De hecho DARPA lanzó hace unos años un programa para estudiar cómo lanzar satélites de forma rápida y más económica, conocido como ALASA.
El Lt. Col. Ryan Rose, jefe del Space and Missile Systems Center’s Small Launch and Targets Division, en la Base Aérea de Kirtland, Nuevo Mexico, ha dicho que
la Fuerza Espacial de los Estados Unidos está colaborando activamente con la industria, puesto que teniendo una industria estadounidense robusta que provea de capacidad de lanzamiento rápido es la clave para asegurarse de que los estados unidos puedan responder a futuras amenazas.
Lt. Col. Ryan Rose
Aevum ha desarrollado lo que dicen que es un nuevo paradigma de acceso al espacio. Y no por lanzar satélites desde un avión, que ya hemos visto que es una vieja idea, sino porque el avión es no tripulado, autónomo y que puede operar en todo tipo de condiciones atmosféricas, logrando que la ventana de lanzamiento sea de un 96% del tiempo, pudiendo lanzar 24/7 hasta 100kg de carga a órbitas heliosíncronas a 500km sin arriesgar vidas humanas. O eso dice su nota de prensa.
El sistema consta de dos partes, la aeronave no tripulada y el lanzador. La primera etapa de éste y la aeronave utilizan Jet A.
El Ravn X mide 80 pies (24.4m) de largo, 60 pies (18.3m) de envergadura y tiene una masa máxima al despegue de 55000 libras (24970kg).
Aevum ha ganado contratos por casi mil millones de dólares con la Fuerza Espacial:
Agile Small Launch Operational Normalizer-45 (ASLON-45)
AFWERX Small Business Innovation Research (SBIR) Phase II
Orbital Services Program-4 (OSP-4IDIQ).
Pese a que los datos económicos son muy buenos falta ver si el sistema funciona y de qué es capaz. Lo seguiremos atentos, si sigue apariciendo en en la prensa.