En las décadas de 1940 y 1950, el fabricante Lockheed ocupaba un lugar destacado en la industria aeronáutica. En el ámbito civil, diseñó el mítico Constellation en los años 1940. Al mismo tiempo, en el ámbito militar, produjo el C-130 Hercules, el famoso transporte táctico que tuvo un éxito extraordinario.
Lockheed también produjo el L-188 Electra, un avión de línea con turbohéliceses, cuyo primer vuelo tuvo lugar en 1957. Este avión mide cerca de 32 metros de largo y tiene una envergadura de más de 30 metros. Está propulsado por cuatro motores de turbina Allison 501-D-13, cada uno con una potencia de 3800 HP. Diseñado para acceder a pequeños aeropuertos regionales de los años 1950, en los que no podían operar jets, el Electra es capaz de aterrizar en pistas cortas y no pavimentadas, requiriendo un mínimo de infraestructura en tierra, lo que lo hace muy útil en regiones aisladas.
¿En alguna ocasión os habéis preguntado por qué los Air Tractor y los Trush se parecen tanto?¿Y por qué si nos remontamos a las versiones con motor radial incluso el Dromader se les parece? Pues porque todos tienen un punto de partida común, el señor Leland Snow. ¿Nos acompañáis en esta historia?
Cada temporada de incendios se discute sobre la necesidad de grandes aviones antiincendios, y después de unos años en los que nos dedicamos a investigar su historia y sus desarrollos, hemos decidido hacer frente a un estudio para intentar responder a esta pregunta.
Visión artística de un A-330 descargando agua con retardante
Seguro que habéis comprobado que siempre que hablamos de aviones eléctricos son aviones con alas muy esbeltas, esto es, de gran alargamiento, casi más próximas en diseño a las de un velero o un motovelero que a las de un avión de aerolínea o un avión ligero.
La ecuación se puede derivar de forma sencilla teniendo en cuenta que el avión vuela la mayor parte del tiempo en crucero, que se puede asimilar a un movimiento rectilíneo y uniforme, y por tanto la sustentación es igual al peso (L=W), la resistencia igual al empuje (D=T), que sustentación y resistencia se relacionan a través de la polar y que la potencia necesaria para volar en crucero es P=T·v·nu, siendo v la velocidad de vuelo y nu el rendimiento del grupo motopropulsor (el rendimiento del motor multiplicado por el de la hélice, por ejemplo).
Si alguien está interesado en el desarrollo matemático de la ecuación, puede encontrarlo en muchas fuentes, como la que hemos enlazado atrás, esta o esta otra.
Básicamente nos dice que el alcance (R de Range) depende del rendimiento motopropulsor, el consumo de combustible específico (SFC), la fineza aerodinámica y la relación entre la masa inicial y la final (y por tanto el combustible que puede consumir).
Esta sencilla ecuación permite comparaciones rápidas entre distintos diseños con parámetros sencillos y que pueden obtenerse fácilmente de los fabricantes, o al menos pueden estimarse con relativa facilidad. Asi que se pueden comparar diseños de forma teórica antes siquiera de haber empezado un desarrollo de detalle.
Se puede realizar un ejercicio similar para derivar esta ecuación para aviones híbridos, o para aviones eléctricos. Nosotros nos centraremos en la ecuación derivada para aviones eléctricos.
Donde Cb es la densidad energética de las baterías (en unidades de energía/masa kW·h/kg, por ejemplo), g es la aceleración de la gravedad, CL/CD es su fineza aerodinámica (la relación entre el coeficiente de sustentación y el de resistencia), Wbatt es el peso de las baterías, WTO es el peso al despegue, y ηi,ηm,ηp son los rendimientos del inversor, del motor y de la hélice.
Una versión aún más simplificada fue la que dio Archer en su web:
R=Ebatt· η·(CL/CD)/MTOW
ó
R=Cb·Wbatt· η· L/D / (MTOM · g)
Donde Ebatt es la energía en la batería y η el rendimiento motopropulsor.
Lo que nos quiere decir que el alcance del avión está definido básicamente por su aerodinámica, la densidad energética de sus baterías y la masa de baterías. En el avión eléctrico no entra en juego el peso final y el inicial, puesto que al no consumir combustible la masa al despegue y al aterrizaje serán la misma (lo que, por cierto, hará que el tren de aterrizaje sea más pesado que en un avión convencional, que no soporta el mismo peso en el aterrizaje que en el despegue).
Sobre el rendimiento motopropulsor apenas tendremos capacidad de decisión, puesto que el rendimiento del motor eléctrico rondará el 90% mientras que el de las hélices está entorno al 85%, así que este rendimiento motopropulsor se puede considerar como constante e igual a un 76.5%.
Nos quedan pues dos parámetros, el de la densidad energética de las baterías, que también se puede considerar constante y dependiente del estado del arte del momento, y la fineza aerodinámica.
Es decir, que si queremos optimizar nuestro diseño, realmente tan sólo podemos actuar sobre un parámetro que dependa de nosotros y no de los proveedores: la fineza aerodinámica.
Para maximizar esa fineza aerodinámica, no queda otra que recurrir a alas de gran alargamiento, tipo motovelero y planeador. Y es por esto que todos los aviones eléctricos cuentan en sus diseños con alas de gran alargamiento, puesto que es un parámetro con el que sí pueden «jugar» los diseñadores con facilidad, siempre teniendo en cuenta que el alargamiento del ala viene limitado por el ancho de la pista, de los aparcamientos, de los hangares… que limitan la envergadura, u obligan a soluciones ingeniosas como alas plegables. ¡Ah! Y si alguno os lo preguntabais, sí, estas ecuaciones de atrás son las que explican de forma sencillael desarrollo del nuevo Boeing con ala arriostrada.
Por finalizar, las densidades energéticas reales hoy en día rondan los 400W·h/kg, aunque se espera alcanzar los 600, e incluso se han llegado a alcanzar cotas superiores, pero siempre en condiciones de laboratorio, no de mundo real.
Y como la densidad se puede considerar también constante, esto nos lleva a una interesante conclusión (que no vamos a desarrollar mucho más porque ya lo hicieron Calin Gologan y Raphael Giesecke): Con la mejor tecnología de baterías que se espera tener, el alcance de los aviones eléctricos estará limitado a unos 500km, 800km en los casos más optimistas. Ésto sin consideraciones de cálculo de desvíos a aeropuertos alternativos. Lo que explica el por qué desde el comienzo los grandes constructores nunca han apostado por los aviones eléctricos, y en este blog siempre hemos defendido que, en el mejor de los casos, quedarán limitados a vuelos recreativos, de entrenamiento o —a lo sumo— operaciones comerciales tipo aerotaxi-vuelo regional-conmuter-evacuaciones médicas entre pequeños aeródromos municipales o entre éstos y algún gran hub central. Y por qué se juzga poco realista cualquier propuesta de diseño que vaya más allá de estos límites.
Parecen dos temas totalmente independientes, pero en el fondo están íntimamente relacionados, y todos se pueden explicar con la misma simplificación matemática de cómo funciona un grupo moto-propulsor de una aeronave.
Una de las teorías más sencillas de cómo se produce el empuje en un avión, sea de motor de pistón más hélice, sea un motor a reacción, sea un turbofan, esla teoría de la cantidad de movimiento.
En esta teoría, se reemplaza todo el grupo motopropulsor por un «disco» que tiene el área de la hélice, o del fan, y que proporciona al aire «aguas arriba» un salto de velocidad y un incremento de presión, lo que genera un empuje.
De esta manera nos permite expresar el empuje obtenido y el rendimiento del grupo motopropulsor de formas muy sencillas.
La teoría tomta tantas hipótesis tan imposibles de cumplir en la realidad, que hace que sea una teoría poco representativa de la realidad. Sin emabargo es MUY simple, y nos da una cota superior del rendimiento del grupo motopropulsor. Esta cota superior del rendimiento sería el rendimiento teórico máximo. Por eso nos permite comparar de forma sencilla y rápida distintas configuraciones, y sabemos que si una configuración es mala con esta teoría —que es en exceso benévola—, en la realidad la configuración será malísima.
No vamos a entrar a desarrollarla, puesto que hay muchos apuntes en internet que la explican, incluso en la Wikipedia, y nos vamos a quedar sólo con las ecuaciones que nos interesan, la de la tracción generada por el grupo motopropulsor (T), y la del rendimiento (potencia util/potencia generada).
T=2·ro·S·(V+vi)·vi
Siendo T la tracción, ro la densidad del aire, S la superficie del disco, V la velocidad de la corriente libre y vi la velocidad que se induce al aire en el disco.
De la primera deducimos que:
Cuanta más densidad de aire, mejor (y por tanto tendremos problemas los días de mucho calor o a gran altitud no solo porque el término de la densidad del aire aparece en la expresión de la sustentación, sino porque también aparece en el de la tracción).
Cuanto más grande sea el disco de la hélice (o del fan), más tracción tenemos. Pero esto nos limitará la velocidad en aviones de hélice muy rápidos, al alcanzar antes la velocidad supersónica en punta de pala que en una hélice de menor radio.
Cuanto mayor es el salto de velocidades antes del disco y después del disco, más tracción tenemos también.
R=1/(1+(vi/V))
Y ahora vamos a por la ecuación del rendimiento. Lo que nos dice es que cuanto mayor sea el salto de velocidades entre la corriente libre (o aguas arriba) y la velocidad que se imprime al aire en el disco, menor será el rendimiento.
Así que para conseguir mucho empuje con un gran rendimiento, hay que mover mucha cantidad de aire (disco con superficie muy grande), dándole un salto de velocidad lo más pequeño posible.
Así pues…
Los aviones de hélice que vuelan relativamente lentos tendrán palas de hélices largas (pero cuanto más rapido tenga que volar el avión, más habrá que recortar la pala)
Los aviones de turbofan procuran dar un salto pequeño de velocidad a mucha cantidad de aire, con motores de muy alto índice de derivación
En tamaño radio control, un helicóptero será más eficiente que un multicóptero, que suelen tener muchas hélices pero pequeñas y su área total rara vez alcanza la del helicóptero de misma masa.
Todos los eVTOL que han optado por configuraciones con un disco pequeño (o suma de discos pequeños, porque casi todos usan mútiples hélices pequeñas) serán mucho menos eficientes que cualquier ala rotatoria tradicional, sea helicóptero sea autogiro