Hoy os traemos el último podcast hasta después del verano, que también está bien tomarse un descanso de vez en cuando, aunque ya sabéis que el blog seguirá con -al menos- una publicación cada lunes.
Nuestro invitado de hoy es Ramiro, de un más que recomendable blog llamado No Barrell Rolls. Y el tema del que nos va a hablar es del programa AERCAB, los asientos eyectables voladores.
Digamos que en caso de saltar en paracaídas sobre territorio enemigo las probabilidades de no volver a casa eran muy altas. Pero si uno se aleja del objetivo, las probabilidades de ser rescatado aumentan. Y si se logra llegar a zona propia… Por eso recuperaron una vieja idea, la de que el piloto se auto-rescatara, como en el caso del avión inflable o del helicóptero más pequeño del mundo, y ese era el fin del programa AERCAB, desarrollar un asiento eyectable que se convirtiera en una aeronave que permitiera a la tripulación eyectada alejarse del objetivo y maximizar sus posibilidades de supervivencia. Se definieron varias, desde un asiento eyectable con ala delta, a un avión plegable como un paraguas pasando por el que posiblemente sea el único autogiro a reacción. Pero mejor será dejar a Ramiro que nos lo cuente…
pd: Si la intro y la despedida os son familiares, que no os sorprenda. En un ejercicio de nostalgia podcasteril he hablado con Javier Lago para pedirle permiso y utlizar la introducción que hizo para el que, si no recuerdo mal, fue el primer podcast español sobre aviación: Remove Before Flight RBF podcast
Hemos hablado de numerosas versiones raras de aviones. Pero esta yo creo que se lleva la palma. Aunque lo más extraño no sea el avión en sí, que no tiene ninguna forma peculiar, ni fuselaje doble, ni materiales exóticos… sino el uso para el que fue diseñado: Estos King Cobra fueron concebidos para que las tripulaciones de bombarderos hicieran blanco sobre ellos, disparándoles con munición de plástico. ¿Vosotros tendríais la sangre fría de permitir que cientos de artilleros os dispararan DE VERDAD, sólo para practicar su puntería? Los cazas, además de una tonelada de blindaje extra, llevaban en el cono de la hélice una luz que se encendía si el artillero había hecho blanco.
El avión, utilizado como blanco aéreo ¡con piloto real dentro!, generalmente se pintó de color naranja brillante para aumentar su visibilidad, aunque hay otros esquemas de pintura acebrados.
Se eliminó todo el armamento y el blingaje estándar, y se sustituyeron por una tonelada de blindaje adicional, que incorporaba sensores para detectar los impactos, que eran señalados con una luz en el cono de la hélice, por donde normalmente asomaba el cañón de 37mm. Esto le valió al avión el apodo no oficial de Pinball, nombre que terminó pintado en el morro de las primeras unidades modificadas. Esta variante recibió el nombre de RP-63.
Como las aeronaves iban tripuladas, se desarrolló munición frangible, hecha de baquelita y plomo, que debía desintegrarse al impactar contra el avión. Estos se conocían como «Cartucho, calibre .30, frangible, bola, M22».
La mejor manera de entrenar a un piloto es hacer que vuele un avión real hasta que sea competente, ¿verdad? Entonces, ¿por qué no entrenar a los artilleros aéreos permitiéndoles disparar a aviones reales? Y, de hecho, esto se haría posteriormente con aviones excedentes de la Segunda Guerra Mundial, como el Hellcat, convertidos en aviones a control remoto y pintados con el mismo color naranja. ¡Pero eso, a control remoto, no tripulados!. Esto hace que este programa sea uno de los más inusuales de las Fuerzas Aéreas del Ejército de EE. UU. (USAAF) en la Segunda Guerra Mundial.
El entrenamiento organizado de artilleros aéreos no comenzó hasta junio de 1941, cuando se estableció la primera escuela de artillería en Las Vagas, Nevada. Tradicionalmente, en todas las escuelas, el entrenamiento inicial del artillero se llevó a cabo utilizando dispositivos improvisados como escopetas montadas en la parte posterior de plataformas móviles, o entrenadores más sofisticados como los entrenadores Jam Handy y Waller. Algunos de los mejores y más realistas entrenamientos se realizaron usando cámaras ametralladora, pero había que esperar a revelar el carrete para evaluar al artillero.
Al mayor Cameron Fairchild se le atribuye la idea de desarrollar una bala no letal que podría dispararse en combates simulados pero sin derribar a los aviones blanco. Inicialmente, la idea era hacer las balas de vidrio, que se romperían y astillarían al golpear algo sólido. Para investigar formas de hacer una bala frangible, Fairchild contó con la ayuda de dos profesores de la Universidad de Duke, Paul Gross y Marcus Hobbs.
En el otoño de 1942, Fairchild presentó su munición al Comité de Investigación de la Defensa Nacional (NDRC, por sus siglas en inglés), donde la propuesta se topó directamente con una pared de ladrillos: el Departamento de Artillería del Ejército, responsable del desarrollo de todas las armas y municiones, que argumentaba que cualquier bala que fuera verdaderamente frágil no tendría las mismas características balísticas que la munición real. También les preocupaban los daños que pudieran recibir el avión blanco y su piloto si no se desarrollaba un blindaje adecuado. Finalmente la NDRC permitió que la investigación continuara pero con financiación y urgencia limitadas.
Con el apoyo de Bakelite Corporation y la Universidad de Duke, los profesores Gross y Hobbs desarrollaron una bala calibre .30 hecha de plomo y baquelita que podía dispararse con una ametralladora ligeramente modificada. En los ensayos, dispararon contra paneles de blindaje de aluminio y, a distancias tan cortas como 9m, no los dañaban. A principios de 1944, la munición frangible estaba lista para la producción con la designación T-44.
Con el problema de las municiones y las armas resuelto, el enfoque ahora se centró en encontrar un avión objetivo adecuado. Las pruebas iniciales se realizaron contra un Douglas A-20 blindado con planchas de aluminio. Sin embargo, un caza monomotor, preferiblemente con un motor refrigerado por líquido, se parecería más y simularía mejor los cazas alemanes, como el Messerschmitt 109. Y el el único caza estadounidense moderno de alto rendimiento que no tenía demanda para uso en combate por parte de las fuerzas estadounidenses era el P-63 Kingcobra de Bell, la mayoría de los cuales se proporcionaban a la Unión Soviética en virtud de la Ley de Préstamo y Arriendo.
En agosto de 1944, Bell modificó cinco aviones P-63A, quitó todo el armamento, reemplazó gran parte de los paneles de aluminio delanteros con paneles blindados más gruesos e instaló vidrio blindado en el parabrisas y las ventanas laterales. Además, se instalaron más de 100 micrófonos detrás de los paneles blindados y se conectaron con un contador de impactos en la cabina, además de con la luz roja de la que hemos hablado antes, situada en el cono de la hélice, por donde solía disparar el cañón Oldsmobile de 37mm.
Designados oficialmente como RP-63A, los cinco prototipos rápidamente se conocieron como «Pinballs» y a alguno se le pintó ese nombre en el morro. Después de resolver algunos problemas carga y centrado, y por tanto de estabilidad, se ecnargaron otros 95 RP-63A, seguidos de 200 RP-63C a principios de 1945, totalizando 300 blancos aéreos tripulados.
Con las primeras entregas de munición frangible producida en masa y aviones Pinball disponibles, finalmente se puso en marcha el entrenamiento a principios de 1945, y la USAAF realizó una demostración pública en marzo de ese año. En abril de 1945, el entrenamiento del programa Pinball estaba en marcha en las siete escuelas de artillería.
Durante el entrenamiento surgieron varios problemas, algunos ya predichos, como la diferente balística de los proyectiles. Por eso las miras de las armas tuvieron que ser recalibradas para la menor velocidad de boca y diferente trayectoria de las balas frangibles. Además las balas de plomo y baquelita hacían que el arma se encasquillara más de lo normal. Aunque la peor parte se la llevaban los pilotos. Pese al blindaje, cuando una bala de plástico hacía blanco en los radiadores, sólo quedaba saltar o aterrizar con el motor parado. Aunque el susto más grande se lo llevó un piloto que volvió con su parabrisas blindado de 38mm de espesor roto por una bala, ¡se había colado una bala real en la cinta de munición de entrenamiento!
Para proteger mejor al avión objetivo y al piloto, la última versión del Pinball, el RP-63G tenía un blindaje extendido para proteger las entradas de refrigeración del motor. Además, se agregaron más luces en el fuselaje y las alas para mejor indicación de cuando los artilleros hacían blanco. Solo se habían entregado 32 de estos Pinballs mejorados cuando se canceló la producción, tras la rendición de Japón.
Los aviones del programa Pinballs y balas frangibles se transfirió del Comando de Entrenamiento de la USAAF al nuevo Comando Aéreo Estratégico, donde continuaron ayudando a entrenar a los artilleros B-29. Sin embargo, en 1948, incluso SAC había abandonado el programa. Los aviones Pinball supervivientes fueron redesignados como QF-63, esto es, blancos aéreos no tripulados.
El programa Control of Revolutionary Aircraft with Novel Effectors (CRANE) tiene como objetivo diseñar, construir y probar en vuelo un novedoso avión experimental que elimine el control mediante superficies aerodinámicas tradicionales y lo cambie por uno basado en control activo del flujo sobre las superficies mediante soplado, Active Flow Control (AFC).
El control de flujo activo podría mejorar el rendimiento de la aeronave al eliminar las superficies articuladas, que actualmente sirven para controlar el avión, pero que aumentan el peso y la complejidad mecánica.
Eliminar las superficies de control móviles supone varias ventajas. Por un lado, reducir el peso de la aeronave, por la eliminación directa de todas las articulaciones. Por otro lado, porque el uso del AFC para el control de la aeronave hace que las superficies aerodinámicas puedan ser más pequeñas.
Y, si no hay superficies móviles, ¿cómo controlamos el avión? Llegado este caso no está de más recordar las entradas de cómo vuelan los aviones, y la de los hipersustentadores. En resumen, recordaremos que el ala genera sustentación gracias a que la circulación que se genera entorno al perfil hace que el aire que pasa por la parte superior del ala vaya más rápido que el que va por debajo, y eso causa que la presión sobre el ala sea menor que bajo él y por tanto la resultante de fuerzas permita elevar el avión.
La sustentación generada por el perfil aerodinámico depende de la propia curvatura del perfil, del ángulo de ataque de este y de la velocidad relativa de éste respecto al aire, ademas de la densidad del aire. Las superficies de control clásicas actúan sobre la curvatura del perfil, mediante articulaciones. Al variar la incidencia de la superficie de control, o al retorcer el ala como hacían en los primeros aviones mediante su torsión, cambiamos la curvatura del perfil y por tanto hacemos que un semi-ala sustente más que el otro, en el caso de los alerones, induciendo el alabeo; o que el empenaje vertical sustente en una dirección o en la contraria. Algunos de los intentos de eliminar las articulaciones, como el morphing, pretende mantener el sistema de cambiar la geometría del perfil, pero recurriendo a la flexibilidad de los materiales, en lugar de a articulaciones mecánicas.
¿Y si en vez de actuar sobre la curvatura del perfil actuáramos directamente sobre la velocidad relativa de éste con el aire? Como la sustentación depende de la velocidad relativa aire-perfil aerodinámico, ¿qué ocurre si soplamos localmente aire sobre una superfice y no sobre la otra? Pues que esa superficie sustentará más que la otra, permitiendo de este modo generar alabeos, virajes… sin necesidad de modificar la geometríad del perfil. Esto permitiría eliminar las articulaciones de los alerones, timonesy flaps, y reemplazarlos por superficies más pequeñas, menos pesadas, menos complejas de mantener, manteniendo e incluso incrementando la maniobrabilidad.
El contrato incluye una opción de Fase 3 en la que DARPA tiene la intención de volar un avión de 7,000 libras (3180kg). Una de las principales características de la aeronave será la implementación de alas modulares, lo que permitirá probar distintas soluciones para encontrar la óptima.
En mayo de 2023, el avión recibió su designación oficial como X-65.
Este tipo de controles se ha ensayado en más ocasiones. Algunos de los ejemplos más recientes son el EcoDemonstrator, de NASA y Boeing, modificando el empenaje vertical de un B757; BAe System lo puso a prueba con su FLAVIIR, que evolucionó en su demostrador MAGMA, que se puede ver en vuelo aquí. Un caso extremo de aplicación de este sistema podría ser la eliminación de los flaps para sustituirlos por Turbo Wings.
La entrega de suministros a unidades aisladas o sitiadas ha demostrado ser imprescindible en todos los conflictos. La Segunda Guerra Mundial introdujo la entrega por aire, con el lanzamiento en paracaídas de los suministros. Sin embargo la falta de precisión de estos envíos hacía que muchos se perdieran o incluso llegaran a manos equivocadas. Por ello se ha intentado realizar el lanzamiento de suministros en paracaídas teledirigidos. Éste es, posiblemente, uno de los intentos más antiguos, utilizando un ala Rogallo en lugar de un paracaídas.
El ala Rogallo es un tipo de ala flexible inventado en 1948 por Francis Rogallo, un ingeniero de la NASA, y su esposa Gertrude Rogallo, a la que llamaron Parawing, aunque suele ser conocida como «Ala Rogallo»
La NASA consideró utilizarla como un sistema de recuperación para las cápsulas Mercury y Gemini, aunque abandonó la idea en 1964 en favor de los paracaídas convencionales.
Ryan Aeronautical Company retomó la idea para realizar entregas de suministros con precisión, aunque éstos fueran lanzados desde un avión o un helicóptero.
Podía funcionar de dos modos, bien remolcada por una aeronave, bien lanzada. En este caso, en una primera fase el ala funcionaría como un paracaídas, y una vez inflado actuaría como un planeador.
Todos los ensayos se realizaron en Yuma, Arizona, entre el 4 de octubre de 1962 y el 1 de marzo del año siguiente.
Los ensayos demostraron que se podían entregar con fiabilidad cargas que variaban entre las 100 y las 300 libras (de 50 a 150 kilos aprox). El radio de giro de planeador variaba entre los 200 y los 400 pies (de 30 a 60m), mientras que la tasa de planeo era similar a la de una piedra (2.8:1), con una velocidad vertical de entre 600 y 900 pies por minuto. La velocidad de vuelo era de 23 nudos (~40km/h).
Los ensayos de los vuelos planeados se realizaron a 95 nudos desde 9000ft sobre el terreno, que con la tasa de planeo de 2.8:1 le daba un alcance de unos 7.7km.
El control se conseguía gracias a un sistema de control remoto. El planeador llevaba dos compartimentos, uno con una batería de 28V y la antena, y otro con una batería de 12V y los servos.
Se realizaron 139 lanzamientos aéreos. En ellos se probaron distintas configuraciones de masas lanzadas, empaquetados y plegados del ala y distribuciones de las líneas que unían la carga útil y el ala. También se ensayaron distintos sistemas de control. En la primera treintena de lanzamientos se intentó utilizar el control por desplazamiento del centro de gravedad, sin éxito. Por ello se cambió el control a las líneas del ala flexible, como en los modernos parapentes.
Algunas de las configuraciones demostraron ser viables, aunque con esas tasas de caída hacían imprescindible el uso de amortiguadores de cartón para la carga.
Los ensayos operacionales se llevaron a cabo en Tailandia, de mayo a junio de 1963, de forma conjunta entre Ryan,ARPA, y los ejércitos estadounidense y tailandés.
En los ensayos operativos se pretendía demostrar la funcionalidad del sistema y su valía tanto para militares como para la policía y la patrulla de fronteras tailandesas, y su capacidad de operación en áreas remotas, así como las necesidades de formación y entrenamiento de personal para su uso.
El ala utilizada tenía un peso máximo al despegue de 386 libras, con una capacidad de carga de 300 libras. Fue lanzado desde distintos tipos de aeronaves, como C-47, Caribou, L-20 (DHC-2-Beaver), H-34 y UH-1.
El sistema de lanzamiento era por el portón lateral, con un sistema de apertura automático, parecido al de los paracaídas: La vela del ala iba dentro de una manga, que a su vez se cogía a la línea de lanzamiento. Al lanzarse por la puerta la vela salía de la manga, que quedaba en la línea, y se desplegaba automáticamente. Este proceso llevaba unos 4 segundos, desde que se producía el lanzamiento hasta que la vela estaba inflada y con forma de ala.
En tierra, un controlador debía tomar el control del planeador para dirigirlo hacia la zona de recepción deseada. Podía hacerlo de dos formas, bien por control manual o bien por control automático. En éste último el operador en lugar de controlar la aeronave, monitorizaba un sistema que, una vez encendido, dirigía de forma automática el planeador hacia él, hasta que llegaba a su vertical, y entonces comenzaba un descenso en espiral. El planeador aterrizaba así, de forma autónoma, en un radio de 100ft (30m) al rededor de la antena. Se comprobó que durante el control manual ésta era también la forma más sencilla de recuperar el planeador, dirigiéndolo hacia la vertical del controlador y aplicando después controles totalmente a la derecha o a la izquierda, para descender describiendo una hélice. Además esta maniobra reducía el tiempo de entrenamiento del operador, así como el tiempo que quedaba expuesto potencialmente el planeador al fuego enemigo.
El transmisor tenía un alcance de 25 millas, si ningún obstáculo, como montañas, se interponía entre él y el paquete lanzado.
Los ensayos se realizaron en todo tipo de terreno, con lanzamientos desde 10000ft, entrenamientos en aeródromos, lanzamientos en zonas despejadas, pero también en zonas de alta montaña y muy boscosas. ¡En uno de los lanzamientos, los controladores de tierra fueron lanzados en paracaídas y tuvieron que caminar tres días hasta la zona de recepción! En el primer lanzamiento, el sistema falló y al equipo le llevó otros tres días localizar el ala, pintada de verde oliva, en la jungla. Por este motivo se suspendieron los lanzamientos en la jungla, hasta que se logró mejorar la fiabilidad del sistema.
Las investigaciones dedujeron que los fallos se habían producido durante el lanzamiento, tras sufrir daños en el lanzamiento desde la línea.
Se hicieron entregas de más de cien kilos de carga, amortiguada por el sistema de cartones, que se demostró muy eficaz.
Con la llegada de la estación de lluvias se comprobó que el sistema no era adecuado para funcionar en esas condiciones.
Las conclusiones de la policía fueron que aunque el sistema necesitaba mejorar en fiabilidad, su coste podría amortizarse en uno o dos lanzamientos, evitando además la pérdida de material lanzado en paracaídas convencionales. El ejército concluyó que el aumento de precisión en el punto de toma de la carga podía merecer la pena para operaciones nocturnas o lanzamientos en zona de montaña, además de operaciones militares donde la baja visibilidad del sistema, su silencioso funcionamiento y la posibilidad de operar de noche facilitaba la entrega de material a las unidades sin delatar su posición. Por supuesto, se juzgó como un buen sistema para re-aprovisionar a las patrullas que estaban desplegadas en la jungla del país.
Las conclusiones del informe estadounidense fueron positivas para el sistema, si exceptuamos que pedían una mejora de un 90% en la fiabilidad para considerarlo viable para un despliegue operativo.
Nos consta que se realizaron otros ensayos en los que, además de ser dirigible, se le incorporaba una hélice, lo que permitía aumentar su alcance, así como aterrizajes más suaves.
Gracias @MassiasThanos que me descubrió la historia y los pdfs, y al usuario @_ooo0OOOO0ooo_ que nos hizo llegar a Massiasy a mi un recorte del 29 de agosto de 1951 del St. Louis Post-Dispatch en el que se ve cómo el ejécito había intentado de otros modos mejorar la precisión de la entrega de las cargas aerotransportadas, en esta ocasión con unos discos volantes que hacían a su vez de contenedor de agua o gasolina, y prescindían del paracaídas.
En ocasiones hemos encontrado artículos en los que se afirma que la barrera del sonido no la rompió Chuck Yeager, en el Bell XS-1, el 14 de octubre de 1947, sino que le ganó por la mano George Welch pilotando el prototipo del Sabre, durante el primer vuelo del XP-86 el 1 de octubre del 47.
Pequeño interludio: Welch es uno de los pilotos que despegó en Pearl Harbor con su P-40 para hacer frente al ataque japonés. Trabajando para la Nort American Aviation voló el P-51. Y también el prototipo del que fue, si la memoria no me traiciona, primer caza a reacción estadounidense diseñado para ser embarcado, el XFJ-1. Cuando North American Aviation tuvo acceso a las innovaciones alemanas en aerodinámica crearon a partir del Fury el XP-86.
En estos mismos sitios suele aclarar que, para lograrlo, había tenido que realizar un somero picado. Por eso mismo nunca le habíamos dado más importancia que una anécdota. El XS-1 era el primer avión en haber superado la barrera del sonido en un vuelo recto y nivelado.
Igual que Welch reclama haber superado la barrera del sonido en un avión subsónico durante un picado suave, hubo pilotos de la Luftwaffe que reclamaron lo propio, volando en los cazas a reacción alemanes del final de la Segunda Guerra Mundial, como por ejemplo Hans Guido Mutke. Incluso algún piloto de P-47 dice haber sido en haber roto la barrera del sonido en un picado.
Pero, insistimos, nunca habíamos dado más valor que el anecdótico a estas reclamaciones precisamente por eso: en todos los casos se tratan de aviones subsónicos que vuelan muy próximos a la velocidad del sonido, pero por debajo de ésta, y necesitaban un picado para superarla. Y, en la mayor parte de los casos, carecían de la instrumentación necesaria para realizar las mediciones adecuadas. El XS-1 seguía siendo el primer avión documentado en superar la barrera del sonido en un vuelo recto y nivelado y, por tanto, el primer avión supersónico.
Sin embargo hemos encontrado un completo estudio sistemático en la revista del Smithsonian, que sí que tiene accesos a registros a los que nosotros no, desmontando ese vuelo supersónico del 1 de octubre de Welch.
Resumen del estudio de Linda Shiner para Aerospace Magazine, del Smithsonian
¿Y si problemas con el tren de aterrizaje hicieron imposible que Welch rompieran la barrera del sonido?
En la revista británica Aviation Classics, número 9, publicado el 24 de marzo de 2011, Duncan Curtis, señala que durante el primer vuelo del XP-86, Welch tuvo problemas con el tren de aterrizaje. Curtis cita el informe norteamericano a la Fuerza Aérea, que describe los intentos de Welch de subir el tren de aterrizaje principal y, más tarde, bajar el de morro. Dado que el problema del tren apareció inmediatamente después del despegue, Curtis concluye que Welch no tuvo oportunidad de superar la barrera del sonido durante ese primer vuelo, ni en los inmediatamente posteriores, North American decidió que sería más seguro volar el XP- 86 con el tren abajo. La siguiente vez que el avión voló con el tren retraído fue después de que Yeager pusiera el X-1 en supersónico (la Fuerza Aérea eliminó la «S» de la designación del avión en 1948). Aunque es difícil pensar que en un primer vuelo en el que se tienen problemas con el tren de aterrizaje un piloto se arriesgue a acelerar el avión más allá de sus límites, podría haber ocurrido, ¿no? Al fin y al cabo estamos en la época en la que los pilotos de ensayos que más destacaban eran también los más temerarios, y no necesariamente los más sistemáticos haciendo ensayos.
¿Era el motor suficientemente potente?
Robert W. Kempel, un ingeniero de pruebas de vuelo retirado de la NASA que trabajó en los cuerpos sustentadores y el vehículo de tecnología avanzada altamente maniobrable (HiMAT), entre otros programas, no cree que el motor del XP-86 en ese momento, el J35, produjera suficiente potencia para empujar el avión más allá de Mach 1. (El legendario piloto Bob Hoover, que voló en el avión que seguía el primer vuelo XP-86, también lo duda). La razón de Kempel: cuando un avión se acerca a la velocidad del sonido, se forman ondas de choque a su alrededor, produciendo resistencia de onda. En su libro The Race for Mach 1, Kempel hace los cálculos: “A un número de Mach de 0,929, el XP-86 había superado solo alrededor del 18 por ciento del pico máximo de la resistencia de onda. La subida de apenas comenzaba”.
Recordad que antes de que el avión alcance velocidades supersónicas, hay partes de éste que ya han alcanzado esta velocidad. Por ejemplo, recordamos que la sustentación del ala viene de que el aire que circula por la parte superior va más rápido que el aire que viaja por la parte inferior de la misma. Por tanto, aunque el avión viaje a una velocidad subsónica, es posible que el aire en la zona del ala alcance velocidades sónicas y se produzcan ondas de choque. Estas ondas de choque producen un aumento de la resistencia. Son los efectos que aparecen en la cercanía del llamado Mach de divergencia.
Duncan Curtis está convencido de que el J35 podría ser suficientemente potente para impulsar al XP-86 hasta Mach 1; como prueba, ofrece el testimonio de Roland Beamont, un piloto de pruebas de la Royal Air Force. En su autobiografía, Testing Years, Beamont cita el informe que presentó después del único vuelo que realizó. en un XP-86, el 21 de mayo de 1948: “Después trepar aproximadamente a 36500 pies, se realizó una picado a potencia máxima y, de acuerdo con el medidor de Mach, se alcanzó Mach 1 a poco más de 29000 pies, con un leve balanceo lateral evidente y con algunos golpes menores en la cola”. Aunque Beamont se quejó de su «aceleración y desaceleración lentas y su hipersensibilidad al movimiento del acelerador en todas las altitudes», el motor que impulsaba su vuelo era el J35.
El ingeniero aerdinámico Ed Horkey, de la North American Aviation, que fue testigo del primer vuelo del XP-86, no está de acuerdo con Kempel y Hoover a cerca de las limitaciones del motor J35. En un discurso que pronunció en 1994 ante la Asociación de Pilotos de F-86 Sabre, dijo que Welch alcanzó Mach 1,02 el 19 de octubre de 1947 y que la velocidad se determinó a partir de la tecnología de seguimiento utilizada por el Comité Asesor Nacional de Aeronáutica. Si esto es así, Welch ya no fue el primero en batir la barrera del sonido, puesto que Yeager lo había realizado cinco días antes.
Aun así hay quien contradice a Horkey. Parece ser que un informe indica que la NACA no participó en la toma de datos sobre el XP-86 hasta enero de 1948. Según el informe, a North American le preocupaba que se pudieran formar ondas de choque alrededor del tubo de pitot, afectando a las mediciones de la presión, que son las que se utilizan para obtener la velocidad en el anemómetro, transformando la diferencia de presión dinámica (la debida a la velocidad) y la estática (la presión atmosférica local). Para ayudar al equipo a corregir las lecturas, la NACA realizó calibraciones y el informe, basado en ocho vuelos realizados entre el 19 de enero y el 13 de febrero de 1948, concluye: “El número de Mach máximo obtenido hasta la fecha durante el picado desde gran altitud (35-40 000 ft) y corregido con un diferencial negativo, como se indicó anteriormente, es 0.937”.
El Sabre fue supersónico, pero no antes que el X-1
La versión oficial de USAF es que el XP-86 pasó por primera vez Mach 1 en un picado suave el 26 de abril de 1948. El logro no fue reconocido en ese momento; la Fuerza Aérea había clasificado los datos de prueba de vuelo en aviones militares, tal como había clasificado el programa X-1. Hoy en día, nadie puede encontrar registros que documenten el vuelo, por lo que se pierden detalles como qué motor usó el XP-86. ¿Fue el J35 original o, como cree Robert Kempel, un motor mejorado? Fuera como fuese, una vez más, es una fecha posterior al 14 de octubre de 1947, invalidando la teoría de que fue Welch el primero en romper la barrera del sonido.
En los Archivos Nacionales, hay más archivos que sugieren que el XP-86 con motor J35 podría haber llegado a Mach 1. En la colección final de informes que North American envió a la USAF, los ingenieros de la compañía insinúan que George Welch voló el XP -86 pasando Mach 1 el 19 de noviembre de 1947, y nuevamente dos días después. “El informe no presenta información de vuelos en números de Mach superiores a 0.919 para que este informe no se clasifique como confidencial y pueda estar disponible para la mayoría de las partes interesadas. Los datos clasificados como secretos se presentarán en forma de Apéndice en una portada separada…)”. Pero no han logrado dar con esos anejos.
En Aces Wild, Blackburn escribe que los registros de North American Aviation se cargaron en vagones de tren para transferirlos a la USAF. En el Centro de Ensayos de la USAF, en Edwards, Wade Scogram de la oficina histórica dice que esos documentos fueron enviados a la Air Force Historical Research Agency ent Maxwell Air Force Base, Alabama. Pero allí parece que tampoco están, el archivista Archangelo Difante, que revisó la colección ampliada y no encontró informes de vuelo.
Si un XP-86 rompió la barrera del sonido antes del 26 de abril de 1948, el registro de ese vuelo está desaparecido.
En 2009, cuando era historiador de la Fuerza Aérea de EE. UU., Richard Hallion, autor de varios libros sobre pilotos de prueba y la historia del vuelo supersónico, investigó la controversia sobre el primer vuelo Mach 1 y escribió una carta al presidente de la Society of Experimental Test Pilots: “Nunca he visto ningún registro o indicación de que George Welch, antes de su trágica muerte en un accidente de F-100, haya afirmado públicamente en ningún foro (o, hasta donde yo sé, a alguien en absoluto) que excedió Mach 1 antes de Chuck Yeager”.
Entre el máximo secreto que rodea a los primeros vuelos supersónicos y el mal mantenimiento de registros de la Fuerza Aérea, aún no está claro si el XP-86 con motor J35 superó el Mach 1. Sí está claro que el Sabre llegaría a superar ese Mach 1. Y no hay lugar a dudas de que el X-1 lo hizo.
Así pues, parece claro que el X-1 superó la barrera del sonido antes que el XP-86, aunque fuera por el estrecho margen de 5 días que se menciona más arriba.
El piloto de P-47 que precedió a ambos
El Thunderbolt era rápìdo. Y muy resistente. Prueba de ello es que alguna de sus versiones se cuenta entre los aviones de pistón más rápidos. Más si lo hacía picando. Y, al menos, dos pilotos aseguran que lo suficientemente resistentes y rápidos como para superar la velocidad del sonido en picado. Incluso Los Ángeles Times recogió la noticia:
Picado en avión a 725 mph. Supera la velocidad del sonido
Los P-47 Thunderbolt, a los que se les bloquearon los mandos, alcanzaron las 12 millas por minuto en un picado, informaron los intrépidos pilotos del ejército.
Farmingdale, Nueva York, 2 de diciembre. (AP)— Hoy se ha dado a conocer cómo dos tenientes del Ejército se lanzaron en picado con su avión de combate Republic P-47 Thunderbolt a una velocidad de 725 millas por hora, más de 12 millas por minuto y más rápido que la velocidad del sonido a gran altitud.
La increíble velocidad, quizás más rápida que cualquier ser humano que haya viajado antes, bloqueó sus palancas de control, informaron los pilotos, lo que provocó que tuvieran que utilizar las manivelas de emergencia para mover las aletas compensadoras del timón horizontal para sacar sus aviones del picado.
“Mi cuerpo fue empujado hacia atrás contra la placa de blindaje trasera y tuve la sensación de que en cualquier segundo el avión se alejaría de mí y me dejaría varado allí mismo, cinco millas sobre el suelo. Es una sensación de falta de aire, tu estómago se enrosca; es algo así como pasar de una ducha caliente a una fría”, dijo el teniente Roger Dyar, uno de los pilotos.
“Cuando actué sobre los compensadores”, dijo el teniente Harold Comstock, “el avión se estremeció como si hubiera sido golpeado por un camión”.
Ambos pilotos se convirtieron en cadetes en 1941. Teniente. Comstock es de Fresno, Cal., y el teniente. Dyar de Lowell, O.
Los Ángeles Times, vol. LXI, jueves 3 de diciembre de 1942, página 1, columnas 4 y 5
Debido a la necesidad de fabricar aviones rápidamente y la proximidad a la fábrica de Republic Aviation, se utilizaron pilotos en servicio activo para algunos de los vuelos de prueba del nuevo P-47.
El 13 de noviembre de 1942 se ordenó a los tenientes probar una nueva antena de radio en el P-47C. El teniente Comstock subió a una altitud indicada de 49600 pies, intentando llegar a los 50000 pies. Debido a la baja densidad del aire y la proximidad con el máximo techo operativo del avión, sentía que los controles no reaccionaban bien. Así que decidió dejar picar al avión, en lugar de arriesgarse a entrar en barrena. Comenzó a descender en picado y después de pasar los 40000 pies descubrió que sus controles se habían bloqueado. Por eso, a los 30000 pies recurrió a los compensadores o trim tab para sacar al avión del picado actuando sobre los timones de profundidad. La aeronave comenzó a salir del picado entre los 20000 y 25000 pies.
Al teniente Dyar le ocurrió algo parecido. Después de aterrizar, el teniente Comstock informó lo sucedido. Fue tras esto que el periódico recogió su aventura.
La velocidad real alcanzada probablemente fue menor que la velocidad del sonido, y el efecto que bloqueó los mandos se denominó «compresibilidad». Muchos pilotos que volaban en combate experimentaron este efecto, pero el entrenamiento y los procedimientos adecuados les permitieron recuperarse.
En 1959, la USAF publicó A Chronology of American Aerospace Events [pdf] e incluyó a los tenientes como responsables de haber establecido un récord al haber alcanzado las 725mph en un picado con potencia (página 389 del pdf enlazado).
En Aces Wild: The Race For Mach 1, Al Blackburn reflejaba que:
En julio de 1944, el Mayor Frederic Austin Borsodi, Jefe de la división de ensayos de combate, del Comando de Material de las Fuerzas Aéreas del Ejército, Wright Field, realizó una serie de picados verticales a máxima potencia desde 40000 pies en un P-51D para evaluar los efectos de la compresibilidad en el manejo de aeronaves. Logró un Mach máximo de 0,86, momento en el que se notó una fuerte sacudida del empenaje. . . muchos pilotos de la Segunda Guerra Mundial creyeron firmemente que habían superado, con sus monturas propulsadas por motor de pistón, la velocidad del sonido en picados pronunciados.
[…]
Los últimos Spitfires, con un techo demostrado de 45000 pies, un ala mucho más delgada de forma en planta elíptica y un carenado de motor con perfil más bajo, nunca pudieron registrar una velocidad máxima superior a 0,9 Mach. Esa es la velocidad más alta registrada, por un margen sustancial de cualquier caza propulsado por hélice.
Oh, sí, en el curso de una de esas inmersiones, al entrar en el aire más denso alrededor de los 20000 pies, la hélice del Spitfire y gran parte de la cubierta del motor se separaban del resto de la aeronave.
Llegar a un número de Mach de 0,90 no fue fácil. . . la velocidad del sonido al nivel del mar y condiciones estándar es de 761 millas por hora. A una altitud de 40,000 pies, el sonido viaja a 662 millas por hora.
A menudo, muchos de estos pilotos, simplemente sufrían los efectos de la compresibilidad del aire y efectos aeroelásticos en las estructuras de sus aviones.