Loewenstein el millonario cayó al mar desde su avión. ¿Accidente, suicidio o asesinato?

Hoy os traemos un misterio digno de Agatha Christie. Un odiado millonario desapareció en pleno vuelo. Su cadáver fue encontrado flotando en el mar. La única solución, haberse caído del avión privado que lo transportaba. ¿Accidente, suicidio o asesinato?

En la tarde del 4 de julio de 1928, un empresario belga extraordinariamente rico llamado Alfred Loewenstein subió su avión privado en el aeropuerto de Croydon. A pesar de ser en los años 20, había quedado atrás la época de los pioneros que atravesaban el Canal de la Mancha arriesgando su pellejo, y era un vuelo de rutina, que lo llevaría a Francia y posteriormente al aeropuerto de Bruselas, donde Loewenstein vivía con su esposa, Madeleine.

Loewenstein era facilmente reconocible para el personal del aeropuerto. De hecho, era reconocible dondequiera que fuera. Era un empresario espectacularmente rico: tan rico que era conocido como el hombre más rico del mundo.

Ya era rico antes de la Primera Guerra Mundial, pero su fortuna aumentó drásticamentetras el Tratado de Versalles. Sus diversas empresas proporcionaban energía eléctrica a países en desarrollo y pronto fue buscado por presidentes y primeros ministros de todo el mundo.

Alfred Loewenstein era hijo de Bernard Loewenstein, un inmigrante judío-alemán que llegó a Bélgica en 1870 y que se inició en el cambio de divisas, se casó con la hija de un banquero belga y luego pasó a la correduría de acciones y bonos en la que al final quebró, principios del siglo XX.

Habiendo liquidado las deudas de su padre, Alfred Loewenstein a su vez se embarcó en el corretaje de valores: recomendó y colocó acciones y bonos (= deudas) con ahorradores e inversores.

En 1908, sucedió que los empresarios canadienses fueron precisamente incapaces de encontrar fondos en su mercado interno para desarrollar sus redes de transporte de pasajeros en Río y Sao Paulo, así como sus empresas de producción de electricidad, unidas bajo la empresa, registrada en Canadá, “Brazilian Traction” . Brazilian Traction, que tenía importantes necesidades de capital, las buscará en Europa ofreciendo bonos al 5%.

Pero, ¿cómo convencer a los inversores y ahorradores belgas, desconfiados de una captación masiva de capital a favor de un negocio lejos de casa, en un contexto de caída de los mercados bursátiles norteamericanos? Loewenstein tiene una idea: ofrece un descuento sobre el valor nominal de los bonos: los vende al 68,2% de su precio teórico de emisión. Por lo tanto, para un valor de bono de 100, el ahorrador obtendrá solo 68,2, mientras sigue recibiendo un interés nominal del 5 por ciento.

Por lo tanto, Brazilian Traction pagará una tasa de interés real de 5% X 68,2, es decir, un equivalente real de 7,3% mientras recauda menos fondos de lo esperado.

La emisión de bonos es un éxito: Brazilian Traction ve cómo el dinero fluye hacia sus arcas, los ahorradores hacen un buen negocio y Loewenstein se llena los bolsillos con comisiones. Brazilian Traction es el golpe que le lanzará profesionalmente.

En 1911, Loewenstein volvió a ser el «hada buena» de Brazilian Traction: facilitó en gran medida la emisión de su deuda suscribiéndose él mismo a numerosos bonos emitidos al mismo tiempo en Bélgica, Francia e Inglaterra. Al hacerlo, obtiene que el pago del interés se realice por una cantidad determinada sobre la base de una paridad franco belga/franco francés fijada por adelantado.

En 1914, el estallido de la Primera Guerra Mundial y la invasión de Bélgica por parte del Ejército Imperial Alemán obligaron a Loewenstein, su esposa y su pequeño hijo a exiliarse en Londres. Con el grado de capitán de las fuerzas belgas, estaba a cargo del abastecimiento de las tropas aliadas. Parece tener tanto éxito en este puesto que su fortuna personal aumenta significativamente.

Con el final de la guerra, Alfred Loewenstein recibe una distinción excepcional en el Reino Unido, por «servicios prestados a la causa aliada», se le otorga la Orden de Bath. Poco conocida en el extranjero, esta distinción es una de las más antiguas (1725) y una de las más prestigiosas. Premia a quienes, con su trabajo, han servido a los intereses del reino. En 1918, la orden aún no estaba abierta a las mujeres (no fue hasta 1971) y estaba reservada especialmente a los británicos. Solo incluye a extranjeros si son particularmente ilustres (el general francés Leclerc, los mariscales Juin o de Lattre y los presidentes Chirac, Sarkozy y Hollande serán posteriormente honrados con esta distinción). Esta distinción es para Loewenstein el signo tangible de un verdadero ascenso social.

¿Compró este título (esta práctica existía en ese momento con varias distinciones) gracias a la fortuna amasada durante la guerra, la que le permitió por ejemplo adquirir una vasta propiedad («Thorpe Satcheville» en Leicestershire)? Nada ha podido establecerlo formalmente, pero Loewenstein en todo caso arrastra tras de sí una reputación sulfurosa de nuevo rico sin escrúpulos con una fortuna cuyo origen sigue siendo sospechoso.

En 1919, Bélgica estaba sumida en una grave crisis económica y el franco belga se devaluó rápidamente. Qué importa en lo que respecta a los tenedores de bonos Brazilian Traction: se les paga un interés sobre una base de una tasa ¡fija! FBF / GBP de… 1914. Por lo tanto, Loewenstein descaradamente hizo que la compañía asumiera un riesgo de tipo de cambio que resultó ser desastroso para ellos. Peor aún, parece, al leer el prospecto de emisión elaborado por Loewenstein, que mientras los bonos emitidos en GBP solo se pueden canjear en GBP, los bonos emitidos en FRF se pueden canjear en… ¡oro! Y Loewenstein, que ha suscrito un gran número de ellos, pretende hacer valer sus derechos contractuales, ofreciendo renunciar a ellos a cambio… ¡por un puesto en el consejo de administración de Brazilian Traction!

La empresa, escandalizada, se niega. Después de tensas negociaciones, finalmente firmó un acuerdo con Loewenstein que incluía una compensación sustancial para este último. Es más rico que nunca. Rico e influyente, es una figura a la vez admirada y odiada, temida y, sin embargo, imprescindible en el panorama financiero europeo.

Si Loewenstein es rico, también es pródigo y generoso y quiere darse a conocer. En casa recibe mucho, y con munificencia: gente guapa, gente influyente, industriales, financieros, deportistas, políticos y aristócratas. Hace alarde de su opulencia en lujosas cenas en las que no presta atención a los gastos y, a menudo, gratifica a sus invitados (¡como a su personal!) con consejos sobre la bolsa de valores que son tan discretos como lucrativos.

Pero en una Inglaterra protestante donde el nacimiento es lo primero, un judío belga convertido al catolicismo y enriquecido por la especulación y los golpes financieros no inspira confianza, es un nuevo rico que usa métodos sucios. Loewenstein invita mucho, pero a cambio recibe pocas invitaciones. Su ostracismo es cortés pero obvio. Esto no cambia sus hábitos de hospitalidad y sus esfuerzos de sociabilidad, pero ¿quién puede saber qué amargura se esconde detrás de la máscara del anfitrión cordial y acogedor?

Loewenstein es un pionero en las finanzas: creó una empresa puramente financiera cuya vocación es tomar y mantener (= to hold, en inglés) un porcentaje no mayoritario en las empresas industriales (es común en estos días). Para liderarlo, tiene a su lado dos “asesores” financieros. Entra en otros mercados y otros negocios, como la celulosa, donde sigue utilizando sus métodos poco limpios, y donde sigue haciendo enemigos. Entra en negocios eléctricos y llega a tener centrales hidroeléctricas incluso en Barcelona. E incluso llega a tener tratos con la monarquía belga, que ve como su moneda no deja de devaluarse y necesita ayuda financiera.

En la primavera de 1926, Dreyfus, uno de sus socios, desató una despiadada guerra institucional, financiera y mediática contra Loewenstein: estaba decidido a recuperar el control de su empresa y sus procesos de fabricación a toda costa. Dreyfus recompra gradualmente el «float» de British Celanese (= acciones que circulan en el mercado y que pueden ser propiedad tanto de inversores institucionales como de particulares) y esto empuja el precio de BC al alza: ¡+ 1500% entre marzo de 1926 y 1927!

Estos dos años son los de un enfrentamiento despiadado entre Dreyfus y Loewenstein tanto en el campo de batalla bursátil como en el de la comunicación (Dreyfus acusa públicamente a Loewenstein de robo de procesos industriales). En juntas directivas y asambleas de accionistas, los dos adversarios irrumpieron con mociones, acusaciones, denigraciones recíprocas y acumularon declaraciones y amenazas que mantuvieron hechizados a los lectores de los diarios económicos.

Seguiría con sus trapicheos y haciendo amigos hasta que…

El cuatro de julio de 1928 era una tarde perfecta para volar, apenas había nubes en el cielo. El piloto, Donald Drew, le aseguró que sería un vuelo tranquilo.

El Fokker F.VII de Loewenstein

Había un total de seis personas en el avión, además de Alfred Loewenstein. Como pasajeros, Fred Baxter, mano derecha de Loewenstein, Arthur Hodgson, su secretario, y además sus mecanógrafas Eileen Clarke y Paula Bidalon.

En el cockpit estaban Donals Drew y Robert Little, el mecánico de vuelo. La cabina de los pilotos no tenía acceso a la cabina de pasajeros.

Poco después de las 18h, el Fokker FVII, uno de los mejores aviones de pasajeros de la época, monopano de ala alta y trimotor, corrió por la pista de hierba hasta despegar. En cuestión de minutos, el avión estaba en su altitud de crucero de 4000 pies.

En la parte trasera de la cabina del Fokker había un baño, que a su vez tenía una puerta que daba al exterior. Pero esta puerta estaba montada de tal manera que la presión del aire la mantuviera cerrada en vuelo, así que, si bien no era imposible, era muy complicado abrirla en vuelo, necesitando dos personas para hacerlo.

Loewenstein pasó la primera mitad del vuelo tomando notas. Luego, cuando el avión se dirigía hacia el Canal, fue al compartimento del baño.

Según las declaraciones hechas posteriormente por Baxter, pasaron diez minutos y Loewenstein aún no había regresado a su asiento. Baxter se preocupó y golpeó la puerta del baño. No hubo respuesta. Forzó la puerta. El baño estaba vacío. Alfred Loewenstein había desaparecido en el aire.

El piloto, en lugar de desviarse a St Inglevert, el aeródromo más cercano, aterrizó el avión en lo que creía que era una playa desierta cerca de Dunkerque.

En realidad, la playa estaba siendo utilizada para entrenamiento por una unidad del ejército francés. Cuando los soldados vieron al Fokker aterrizando, comenzaron a correr por la playa para encontrarse con él. Les llevó seis minutos llegar al avión detenido, para entonces los pasajeros y la tripulación ya habían desembarcado.

Inicialmente, fueron interrogados por el teniente Marquailles, pero no pudo entender lo que había sucedido. El piloto Drew se comportó de manera particularmente extraña, evadiendo sus preguntas durante media hora hasta que finalmente admitió que habían perdido a Alfred Loewenstein en algún lugar sobre el Canal de la Mancha.

Drew fue interrogado a continuación por el Inspector Bonnot. El inspector confesó estar extremadamente desconcertado por lo que le contaron. «Un caso muy inusual y misterioso», dijo. «Todavía no hemos decidido ninguna teoría definitiva, pero todo es posible».

No arrestó a nadie e incluso permitió que el avión continuara su vuelo hacia St Inglevert y luego regresara a Croydon.

El cuerpo de Loewenstein fue finalmente recuperado por un pescador en el mar cerca de Boulogne sur Mer el 19 de julio, a diez millas del cabo de Gris-Nez, más de dos semanas después de su desaparición. Vestía apenas unos calzoncillos y unos calcetines de seda. Fue llevado en un barco de pesca a Calais, donde se confirmó su identidad gracias a su reloj de pulsera.

Una autopsia reveló que tenía una fractura parcial de cráneo y varios huesos rotos. Los científicos forenses concluyeron que estaba vivo cuando golpeó el agua y que murió ahogado.

El misterio de cómo cayó a su muerte quedó sin respuesta, aunque hay muchas teorías. Algunos dijeron que habría abierto accidentalmente la puerta equivocada y había caído.

Otros dijeron que se había suicidado, tal vez porque sus prácticas empresariales corruptas estaban a punto de ser expuestas.

Incluso hubo teorías acerca de una desaparición voluntaria, según las cuales el aterrizaje en la playa fue para que pudiera escabullirse y desaparecer, mientras que un cadáver de un desconocido fue arrojado al mar ataviado con posesiones personales de Loewenstein.

Una explicación mucho más plausible y siniestra es que fue arrojado a la fuerza desde el avión por su mano derecha y el secretario, posiblemente por orden de la esposa de Loewenstein, Madeleine. Tenían una relación muy tensa y ella estaba desesperada por obtener su fortuna.

Una cosa está clara: las seis personas a bordo probablemente estaban al tanto del asesinato. De hecho, probablemente lo habían planeado cuidadosamente de antemano.

Una teoría sobre por qué el Fokker aterrizó en la playa era para que una nueva puerta trasera pudiera ser instalada para reemplazar la que se arrojó al Canal. Esto encaja perfectamente con la historia de un pescador francés que recordó haber visto algo parecido a un paracaídas cayendo del cielo en el momento preciso en que Loewenstein desapareció. Este paracaídas era muy probablemente la puerta trasera.

Si la puerta y Loewenstein fueron arrojados al Canal, fue el crimen perfecto. Nadie fue acusado del asesinato. En cuanto a Loewenstein, era tan impopular que terminó siendo enterrado en una tumba sin marcar. El funeral tuvo lugar el 22 de julio en el cementerio de Evere, una comune de Bruselas.

Nisiquiera su dolida viudase presentó. Sin duda tenía asuntos más importantes que atender, organizando e invirtiendo la fortuna que acababa de heredar.

Fuentes: Strange Co, Affaire Loewenstein, The very strange death of Loewenstein

Ingenuity, el helicóptero que vuela en Marte, perdió un instrumento, y fue reemplazado por un parche informático

Hace dos años recogíamos en estas páginas el primer vuelo de una aeronave en una atmósfera distinta a la terrestre. Se trataba del helicóptero Ingenuity en la atmósfera marciana, que ya ha realizado más de 50 vuelos en estos dos años en la atmósfera marciana, ¡a pesar de estar pensado para cinco vuelos a realizar en 30 días!

También explicábamos entonces los problemas de volar en otro planeta y otra atmósfera.

Unos eran de diseño, pues todo lo que se conoce de aerodinámica ha sido desarrollado para la gravedad terrestre y para la densidad de la atmósfera terrestre, y en marte tenemos mucha menos gravedad y muchísima menos densidad atmosférica, lo que hace que a pesar del pequeño peso del helicóptero hagan falta unas palas de un diámetro considerable y que giren a mucha velocidad. La gravedad de Marte es entorno a un tercio de la de la Tierra (3.72m/s² frente a los 9.81m/s²), lo que hace que los 1.8kg de masa pesen menos allí que aquí. Sin embargo ¡la densidad de la atmósfera es de un 1% la de nuestro planeta (~0.01kg /m3 frente a los 1.225kg/m3)!.

Los otros tenían que ver con la navegación. Podríamos pensar que este helicóptero se trata de un pequeño drone, y todos sabemos lo sencillo que es volar un drone en la Tierra… pero tenemos que tener en cuenta que en Marte no hay un sistema de navegación por satélite, así que sería como un drone terrestre de vuelo totalmente manual. Pero debido al retraso con el que llegan las órdenes al Planeta Rojo, no se puede volar en manual, y requiere que las cámaras de visión artificial, los sensores de altitud y el piloto automático sean capaz de seguir de forma autónoma el vuelo pre-programado y enviado desde la tierra.

El inclinómetro sólo se utiliza antes de despegar, y básicamente es el que dice al resto de los instrumentos dónde está la horizontal. Una vez establecida la posición horizontal, la aeronave puede volar con seguridad. ¿Habéis volado algún drone y lo habéis calibrado poniéndolo en plano para que sepa exactamente cuál es la horizontal? Pues lo mismo y de forma automática. Gracias a ésto, saben que el altímetro láser está midiendo exactamente a la vertical, por ejemplo.

Pero el año pasado se quedó sin inclininómetro, y nos quedó pendiente contaros cómo lo han hecho para que el helicóptero siga funcionando hasta completar más de cincuenta vuelos.

La solución vino de un ingenioso parche informático.

Los «IMU», los inerciales, vamos, son acelerómetros que se utilizan en la navegación inercial del Ingenuity. Éstos miden aceleraciones, e integrando una aceleración se obtiene una velocidad, por lo que se puede saber a qué velocidad vuela, e integrando una velocidad se obtiene una distancia, y por tanto una posición. Estos inerciales, combinados con el altímetro láser y con las cámaras son los que permiten volar de forma controlada y segura en ausencia de otros medios de navegación.

El parche, simplemente, ha permitido utilizar los datos provenientes de estos inerciales para suplir el inclinómetro. ¿Que no es lo suyo? Cierto. ¿Que no es tan exacto? También. ¿Que funciona y ha permitido prolongar la vida del helicóptero marciano más allá de lo previsto? Es un hecho.

La USAF selecciona a JetZero para construir un prototipo de Blended Wing Body

Los Blended Wing Body o BWB aparecen cada cierto tiempo en este blog desde que lo abrimos. Siempre se habla de sus posibilidades como configuración del avión del futuro, frente a la configuración tubo-y-ala, por su baja resistencia aerodinámica, y por tanto bajo consumo, así como su alto volumen disponible de carga. Y hoy nos hemos sorprendido con la nota de prensa de la USAF en la que anuncian que la start-up JetZero construirá un prototipo de BWB.

Según la nota de prensa…

El Departamento de la Fuerza Aérea seleccionó a JetZero para la próxima fase de un proyecto de prototipo de aeronave BWB el 16 de agosto.

El 16 de agosto de 2023, el Departamento de la Fuerza Aérea seleccionó a JetZero para el proyecto de prototipo de BWB, y para demostrar su viabilidad.

Con un diseño que difiere de una aeronave tradicional de tubo y ala, el BWB combina el cuerpo de la aeronave con su ala de alta relación de aspecto, reduciendo la resistencia aerodinámica en al menos un 30% y proporcionando sustentación adicional. Esta mayor eficiencia permitiría un mayor alcance, más autonomía y una mayor eficiencia en el consumo, capacidades que son vitales para mitigar los riesgos logísticos.

Y por su tipología puede reemplazar muchos tipos de aeronaves de la fuerza aérea, estima la nota de prensa que el 60% de la flota.

El departamento de defensa invertirá 235M$ en cuatro años, y esperan que el primer vuelo sea en 2027.

Según JetZero

y según muchos otros investigadores, la configuración de ala-y-tubo no ha evolucionado apenas desde los años 30, y va siendo hora de de un cambio.

Además de los citadas ventajas de reducción de consumo y por tanto incremento de la autonomía, cita que por su tamaño puede seguir utilizando las infraestructuras ya existentes.

Además, la posición de los motores permite apantallar el ruido, haciendo que éste sea menor en tierra, reduciendo así su firma sónica.

Aunque una de las desventajas que se suelen atribuir a este tipo de aeronaves es el tiempo de evacuacion, y lo difícil que es escalar hacia arriba esta configuración sin incrementar más allá de lo permisible el ya citado tiempo de evacuación, Jet Zero indica que esta configuración permite un embarque y desembarque más rápidos.

Otros de los inconvenientes que se suelen citar para esta configuración es la no idoneidad para ser presurizada (para ésto es mejor un fuselaje cilíndrico), lo lejos que quedan las ventanas de los pasajeros en las zonas centrales, y las aceleraciones que sufren los pasajeros situados en las zonas más externas del fuselaje. Sin embargo JetZero defiende que esta configuración mejorará la experiencia del pasajero. Aunque, ya sean inconvenientes o ventajas, no son tan críticas para las variantes militares propuestas.

No está de más recordar que Boeing presentó en enero un concepto de diseño similar.

Convirtiendo cualquier avión de carga en un «camión de misiles»

Imagen digital del lanzamiento de misiles

Hasta ahora los «camiones de misiles», o los «aviones misileros», han sido grandes bombarderos capaces de transportar auténticos racimos de misiles de crucero. En la esfera occidental, este cometido era típicamente desempeñado por el B-52, mientras que en la esfera rusa este cometido ha sido desempeñado típicamente por los Tu-95 Bear.

https://youtu.be/hnYLab1IRoY

Pero tanto Estados Unidos como Japón están interesados en que este tipo de misiles puedan ser lanzados desde cualquier avión de transporte, convirtiendo virtualmente cualquier C-130 o cualquier C-2 en un avión misilero de largo alcance capaz de concentrar gran potencia de fuego en forma de misiles de crucero de forma rápida en casi cualquier parte del mundo.

La propuesta es similar a la que hacía Astraius para lanzar satélites desde este mismo tipo de aviones.

Sistema Astraius para lanzar satélites desde aviones de transporte

Al ser un sistema paletizado, virtualmente puede utilizarse en cualquier avión de carga militar compatible con estos palets.

Se cargan los misiles de crucero por la rampa trasera, y se lanzan a través de esta misma puerta en vuelo, como ya se hace con otro mucho tipo de cargas. Un paracaídas extrae la carga, y una matriz de paracaídas la estabiliza durante la caída. Tras ser estabilizada, los misiles de crucero se liberan de sus jaulas, para iniciar el vuelo hacia sus objetivos.

Procedimiento de lanzado

Así, en un solo vuelo, un C-17 puede lanzar de forma rápida y con una solución de bajo coste ¡45 misiles AGM-158 JASSM!

Estados Unidos realizó los primeros ensayos en diciembre 2021, y los han desplegado hasta las últimas maniobras realizadas en el Pacífico, cosa que parece que ha gustado poco a China.

KC-2 japonés

Japón se ha interesado recientemente también por este tipo de sistema lanza misiles, y por este misil, que además puede ser lanzado también desde el F-15, avión con el que también cuenta Japón en el inventario de su fuerza aérea.

En cuanto a la asignación o reasignación de objetivos para los misiles de crucero lanzados desde un avión, Lockheed Martin también proporcionó más detalles sobre el proceso de selección de objetivos utilizado en las pruebas. En ambos vuelos del C-17 y EC-130, el personal en tierra utilizó comunicaciones más allá de la línea de visión (enlaces de datos de comunicación por satélite) para transmitir datos de selección de objetivos al sistema Rapid Dragon, demostrando la capacidad de reorientar los misiles mientras la aeronave de lanzamiento está en el aire.

España tuvo un proyecto similar, llamado Nitrofirex, aunque pensado para apagar fuegos, lanzando aviones no tripulados apagafuegos desde el portalón trasero de un avión de carga.

Sería interesante preguntarse si Airbus, que ya ha lanzado aviones no tripulados por la rampa trasera del A-400M, se ha planteado un desarrollo similar.

[Vídeo] Avión-automóvil Tampier, de 1921 (Coches que Vuelan)

Gracias a Thanos Massias hemos dado con este avión-automóvil, de hace más de 100 años. Como bien dijo su creador, René Tampier, la aproximación de diseño es, como casi siempre todo sea dicho de paso, hacer un avión que puede roar por carretera, más que un coche que vuela.

Y la aproximación es muy similar a la del más actual Plane Driven, ala plegable para no ocupar mucho espacio en tierra, y un tren motor adicional que se monta bajo la cola.

El avión-automóvil de Tampier como avión, el diseño es convencional para la época, incluso en el diseño de las alas plegables, y con un motor Hispano Suiza V8 de 300HP. Y como automóvil, tan sólo tiene un tren auxiliar que se monta bajo la cola, con un motor de cuatro cilindros y apenas diez caballos. En vuelo este motor iba retraído y carenado dentro del fuselaje, en una posición adelantada, para mantener el centro de gravedad dentro de límites. Y, para ahorrar peso, utilizaba para refrigerarse el mismo radiador que el motor del avión.

El pequeño motor que le permitía circular por tierra contaba con un embrague que le permitía cambiar de marchas, también marcha atrás, y con otro embrague que le permitía actuar como motor de arranque del Hispano Suiza.

El tren-motor terrestre estaba dotado, además, de un juego de frenos.

Lo más peculiar, como automóvil, es que se conduce «hacia atrás», o con la cola por delante. De este modo el piloto mira hacia el Hispano Suiza mientras vuela, y el conductor lo hace hacia la cola. Los del conductor iban entre la del pasajero y la del piloto, lo que hacía posible que el pasajero los alcanzara en caso de necesidad, dice la prensa de la época.

En tierra se podía mover entre los 10 y los 20km/h con facilidad en la primera marcha, y hasta 30 en la segunda. En el aire alcanzaba los 170km/h de velocidad máxima.

Como aeronave, era una aeronave normal, pero con sobre-peso. Aunque éste, en un avión más grande, posiblemente no fuera tanto, o incluso disminuyera, al eliminar las baterías y los generadores.

Lo curioso, leyendo la prensa de la época, es que no se plantea como un «coche que vuela», sino como un demostrador tecnológico para aviones más grandes, a los que las alas plegables les aportaría ventajas de hangaraje y el pequeño motor de automóvil les aporta ventajas de movimiento en tierra, para entrar y salir del hangar, o para desplazarse a las instalaciones de mantenimiento, evitando el uso de camiones. Incluso como ventaja adicional se menciona que, al poder funcionar durante el vuelo, el pequeño motor haría de generador eléctrico, haciendo innecesario el peso de las baterías y de generadores auxiliares tipo RAT, además de hacer al avión autónomo durante el arranque. Aunque también proponían como ventaja el poder seguir por tierra el viaje en caso de niebla o de incrustarlo en compañías de caballería o artillería…

Desde este punto de vista, convierte al diseñador en todo un pionero, que se adelantó a los diseños actuales de pequeños motores instalados en el tren de aterrizaje, lo que permite rodar sin necesidad de utilizar los grandes turbofanes, e incluso se adelantó al uso de las APU.

Avión-automóvil en el aeródromo de Buc, al sur de París, 1921
  • Envergadura: 13.50m
  • Ancho con las alas plegadas: 2.50m
  • Largo: 8.50m
  • Largo, como coche: 8.45m
  • Alto: 2.80m

Fuentes: Les Ailes, Les Ailes [-2-], Corpus Tampos, Gallica [-1-], Gallica [-2-], Gallica [-3-]