Si los estadounidenses hacían volar su avión de hidrógeno en los 50, el Bee Project, los rusos lo hacían en los 80. Y como veis ya se planteaban soluciones de diseño de almacenaje de hidrógeno similares a las que se plantean hoy en día.
A mediados de la década de 1970, la estrategia energética dominante en la URSS suponía que la energía atómica sería la predominante, mientras que el petróleo y el gas deberían considerarse de menor importancia en vista de su escasez, pues se creía que se acabarían muy pronto.
Se inició Programa de Energía de Hidrógeno. Los especialistas de Tupolev participaron en el programa. Alexey Tupolev tomó una decisión valiente: construiría aviones a hidrógeno.
Y se diseñó un avión, el Tu-155, que fue construido y probado con éxito, sin incidentes. Fue precedido por un programa de ensayos en banco en tierra, destinado a probar el funcionamiento de nuevos sistemas (¡más de 30 en la aeronave!) y verificar que su operación era segura.
Finalmente, la estrategia energética mencionada anteriormente no fue la que triunfó. La energía atómica no dominó el panorama. Fue el gas natural. El contenido de gas natural
Es por eso que Tupolev apostó finalmente por no usar no solo hidrógeno líquido sino también gas natural licuado (GNL). Así se construyó la primera Aeronave Criogénica del mundo.
Las notables propiedades del hidrógeno líquido como combustible de aviación y su alta limpieza ecológica, atrajeron la atención de los especialistas en aviación hacia este tipo de combustible. El hidrógeno líquido permite mejorar significativamente el rendimiento de las aeronaves, para construir aeronaves incluso que operen a velocidades de M>6.
Sin embargo, el precio extremadamente alto del hidrógeno líquido ha hecho que su uso comercial sea imposible durante mucho tiempo.
El «Programa de desarrollo de la aviación civil rusa para el período de 2002 a 2010 y hasta 2015» concluía que, en un primer paso, habría que introducir el GNL como combustible. Posteriormente llegaría el hidrógeno..
El gas natural se suministraría a cada aeródromo a través de tuberías. Su alta capacidad energética haría posible construir aeronaves con un rendimiento significativamente alto en comparación con las aeronaves que utilizan queroseno.
La reducción de emisiones utilizando el GNL se reduciría de la siguiente manera: monóxido de carbono: 1 a 10 veces, hidrocarburos: 2,5 a 3 veces, óxidos de nitrógeno: 1,5 a 2 veces, hidrocarburos aromáticos policíclicos, incluido el benzapireno, 10 veces.
El TU-155 fue construido sobre un TU-154B de serie. Para utilizar combustible criogénico, se modificaron el fuselaje y algunos sistemas estándar. Se instalaron sistemas de carga, almacenamiento y alimentación de combustible criogénico que garantizaban la seguridad contra incendios/explosiones, y también el sistema de adquisición y registro de datos.
Por motivos de seguridad, el sistema de combustible criogénico experimental se colocó dentro de un compartimento especial aislado de los compartimentos del fuselaje adyacentes mediante áreas de amortiguamiento provistas de un sistema de ventilación.
El motor experimental NK-88 impulsado por GNL o hidrógeno estba ubicado en la góndola derecha.
El combustible criogénico se mantenía en un tanque de combustible de 17,5 m3 de capacidad instalado en la parte trasera de la cabina de pasajeros. Para cargar la aeronave con combustibles criogénicos, se hizo un sistema de carga especial que, por seguridad, se ubicó en un lugar aislado, en el que también se alojó aire acondicionado.
Se ensayaron en tierra todos los sistemas nuevos del Tu-155 en busca de los problemas que pudieran surgir en el aire o, mejor dicho, para que no surgieran problemas en el aire. El 15 de abril de 1988, la aeronave realizó su vuelo inaugural utilizando hidrógeno líquido. El 18 de enero de 1989, el TU-155 realizó su primer vuelo con gas natural licuado. Se cumplió un gran programa de pruebas de vuelo, se realizaron varias demostraciones de vuelo internacionales, incluidas las de Bratislava, Niza, Berlín y Hanover.
El motor empleado fue el NK-88, un derivado del turbofan Kuznetsov NK-8-2, con un empuje 20945 Ib (9500 kg), el mismo que el del motor original.
El tanque principal, de 3,1 m de diámetro y 5,4 m de largo, era de aleación de aluminio AMG6 (en designación americana es similar al 5182), y tenía un revestimiento aislante de 50 mm de espuma de poliuretano. El motor NK-88 tiene una bomba centrífuga de dos etapas dedicada impulsada por una turbina de aire sangrado del motor. El GNL llegaba a -152°C pasaba a través de un intercambiador de calor para convertirlo en gas. La cámara de combustión del motor podía aceptar este suministro de GNL, hidrógeno o queroseno, que normalmente se usa para los otros motores.
El desarrollo del TU-155 no sólo sirvió para entender cómo había que diseñar un avión a hidrñogeno, sino que se aprendió qué nuevas especialidades en ingeniería serían necesarias dentro de una compañía fabricante de aviones, que infraestructura terrestre criogénica era necesaria, cómo sería la logística para suministrar el combustible al avión, las medidas a tomar para garantizar la seguridad contra incendios/explosiones de aeronaves criogénicas y los equipos de soporte en tierra…
Era capaz de transportar 14 t de carga útil para una distancia de 2600 km con GNL y una distancia de 3300 km con GNL y queroseno.
Las empresas que participaron en el programa fueron, además de Tupolev: Kuznetsov, UKBM, OKB Crysta, GUP AKB, KKB Armaturproekt, AO tekhpribor, EPO Signa, KPKB Kriogenmash, NPO Khimavtomatika, TsIAM ( Instituto central científico de investigación de motores de aviación) , TsAGI ( Instituto central de aerohidrodinámica), VIAM (Unión científica para la investigación de materiales de aviación), GIPKh (Instituto estatal de química), VNIIPO, GosNIIGA ( Instituto estatal de investigaciones científicas para la aviación civil) , J.I.N.R., KHFTINT, KBOM, Gazprom, MGPZ y otras.
Los resultados fueron tan prometedores que se iniciaron los desarrollos de otros cuatro aviones con este sistema criogénico que permitía volar con hidrógeno o gas natural licuado, los Tupolev Tu 204K, 330K, elregional Tu-136 y el Tu 334.
Fuentes