Northrop Grumman está colaborando con la NASA para desarrollar y probar soluciones para integrar grandes sistemas de aeronaves no tripuladas en el espacio aéreo estadounidense.
El esfuerzo se centrará en las operaciones de carga aérea y es parte del subproyecto Pathfinding for Air Traffic Management-eXploration (ATM-X) de la NASA para el espacio aéreo con vehículos autónomos. Este trabajo incluirá la coordinación con la FAA, revisiones de preparación de vuelo y desarrollo de un plan de prueba para simulaciones y demostraciones de vuelo.
Al asociarnos con la NASA, detallaremos los requisitos y las soluciones para hacer posible que las aeronaves autónomas, en este caso de carga aérea, se integren sin problemas y de manera segura en el espacio aéreo nacional. Nuestro trabajo conjunto mejorará el acceso al espacio aéreo y transformará la forma en que se utilizan los sistemas no tripulados para transportar mercancías a través de los EE. UU.
Tom Jones, vicepresidente corporativo y presidente de Northrop Grumman Aeronautics. Sistemas
Visión artística del demostrador del airliner del futuro, con ala super esbelta y arriostrada
En el intento de lograr reducir las emisiones de la aviación, Boeing y la NASA han lanzado un proyecto de 425 millones de dólares para diseñar y fabricar un avión demostrador de lo que podría ser el avión de aerolínea del futuro.
Este avión mantiene la forma clásica de fuselaje de tubo, e incorpora un ala de gran alargamiento arriostrada. El ala de gran alargamiento reduce la resistencia inducida, y la riostra hace posible esta gran envergadura sin subir en exceso el peso de la unión al fuselaje, o encastre.
Alas de tal envergadura podrían requerir mecanismos de plegado, cual avión de portaaviones, si superasen las envergaduras para las que están diseñados actualmente los aeropuertos.
Para los que esperaban un avión del futuro con forma de ala volante, explicar que mantener la forma de tubo tiene sentido dado que en un ala volante la presurización es compleja, el tiempo de evacuación podría crecer, las posiciones de los asientos más alejadas de la línea central del avión podrían ser incómodas para los pasajeros durante distintas maniobras, además de que la logística aeroportuaria, incluidas terminales, están diseñadas para aviones de fuselaje tipo tubo. Así pues no es sorprendente que se mantenga esta configuración de tubo y ala.
También podemos observar en el modelo que la flecha del ala, la inclinación hacia atrás de la misma, es menor, de lo que se infiere unas menores velocidades de crucero. Por la forma del ala y la posición de los motores en él se abre la posibilidad a nuevas motorizaciones, desde turbofanes de más alto índice de derivación a turbohélices avanzados o incluso conceptos de rotor abierto.
– La NASA, Boeing y sus socios tienen como objetivo reducir el uso de combustible y las emisiones hasta en un 30 % en aviones de pasillo único
– Los avances en tecnología sostenible son cruciales para alcanzar el objetivo de la aviación civil de tener cero emisiones netas de carbono para 2050
La NASA seleccionó a Boeing para liderar el desarrollo y las pruebas de vuelo de un demostrador tecnológico del concepto Transonic Truss-Braced Wing (TTBW).
Las tecnologías demostradas y probadas como parte del programa Demostrador de vuelo sostenible (SFD) proporcionarán información imprescindible para los diseños futuros , que podrían conducir a avances aerodinámicos y de eficiencia de combustible.
Cuando se combina con los avances esperados en los sistemas de propulsión, los materiales y la arquitectura de los sistemas, un avión de pasillo único con una configuración TTBW podría reducir el consumo de combustible y las emisiones hasta en un 30 % en relación con los aviones de pasillo único más eficientes de la actualidad, dependiendo del perfil del vuelo. El programa SFD tiene como objetivo promover el compromiso de la industria de la aviación civil de alcanzar cero emisiones netas de carbono para 2050, así como los objetivos establecidos en el Plan de Acción Climática de la Aviación de EE. UU. de la Casa Blanca.
Las alas ultra esbeltas arriostradas de gran alargamiento, podrían eventualmente acomodar motores más avanzados, cuyo uso ahora queda restringido por la falta de espacio debajo del ala en las configuraciones actuales. Para el vehículo de demostración, Boeing utilizará elementos de vehículos existentes y los integrará con componentes completamente nuevos.
La financiación de la NASA a través del Acuerdo de la Ley Espacial SFD asciende a 425 millones de dólares. El programa SFD también aprovechará hasta $ 725 millones en fondos de Boeing y sus socios de la industria para dar forma al programa de demostración y satisfacer las necesidades de recursos requeridas. Por separado, las inversiones internas anteriores de Boeing para las fases recientes de investigación de aviación sostenible totalizan $ 110 millones.
El concepto de fuselaje TTBW es el resultado de más de una década de desarrollo respaldado por la NASA, Boeing y las inversiones de la industria. Bajo programas anteriores de la NASA, incluido el programa Subsonic Ultra Green Aircraft Research de la agencia, Boeing realizó extensas pruebas en túneles de viento y modelado digital para avanzar en el diseño del TTBW. Los primeros estudios conceptuales comenzaron bajo el programa de Aviación Ambientalmente Responsable de la NASA.
Y ya sabéis, si os ha gustado la entrada, ¡seguidnos!
Es cierto que hemos visto pasadas a cotas mucho más bajas que esta en este blog, pero un Tomcat y un Hornet volando en formación cerrada, casi en espejo, como si de una pasada de los Blue Angels se tratara, a baja cota al costado de un portaaviones, merece sin duda la presencia en este blog.
Incluso antes del final de la Segunda Guerra Mundial, las Fuerzas Aéreas del Ejército de EE.UU. (USAAF) pensaban un bombardero estratégico de próxima generación para reemplazar al enorme Convair B-36, entonces en desarrollo.
A fines de 1945, la USAAF comenzó a evaluar los requisitos para un nuevo bombardero de este tipo, y el 13 de febrero de 1946 emitió una especificación formal para él: una velocidad mayor que la del B-36 y un radio operativo de 8.050 kilómetros (5.000 millas).
La compañía Boeing respondió con un diseño, designado internamente como «Modelo 462«, que se parecía a un B-29 Superfortress escalado con seis motores turbohélice Wright T35 Typhoon, de 5500 HP cada uno. Los motores turbohélice se eligieron por motivos de consumo: los turborreactores puros de la época eran motores muy sedientos, y con el turbohélice se esperaba tener un mayor alcance.
Modelo 462
El Modelo 462 utilizaría los últimos avances tecnológicos disponibles en la época. Sin embargo, la forma exterior debería haber sido muy similar a los B-17 y B-29 existentes, pero de mayor tamaño. Se suponía que el avión tendría una longitud de unos 50 m y una envergadura de unos 63-65 m. Según los cálculos, el peso de un avión vacío podría superar las 75 t, y el peso máximo al despegue alcanzó las 160 t. Sin embargo, el peso de la carga útil excedía cinco veces los requisitos iniciales: más de 22,5 toneladas de bombas. Como en el B-29, la tripulación de diez hombres viajaría en una cabina presurizada en el morro, desde donde controlarían de forma remota tanto la bodega de bombas como las armas defensivas. Estas armas defensivas serían torretas con cañones de 20mm, y un montaje cuádruple de cañones de 20mm en la cola.
Disposición del armamento en el Modelo 462
Bodega de bombas con distintas configuraciones de armamento
El gran peso al despegue no permitió conservar el clásico tren de aterrizaje de Boeing, como el montado en el B-29 o el B-50. Se cambió a un tren biciclo, con dos trenes principales en el fuselaje, y trenes auxiliares bajo la góndola de un motor en cada semi-ala.
Modelo 462
A la USAAF le gustó la idea, y el 5 de junio de 1946 el servicio otorgó a Boeing un contrato de estudio para la máquina, que poco después recibió la designación militar «XB-52«. El contrato especificaba una maqueta a gran escala, pero no un prototipo funcional.
B-17 con XT35
El primer prototipo del motor XT35 se instaló en el morro de un bombardero Boeing B-17 para comenzar las pruebas de vuelo en septiembre de 1947. Pero la USAAF había decidido que el diseño del Modelo 462 no podía cumplir con las especificaciones de alcance y canceló el contrato en octubre de 1946.
Con la cancelación del Modelo 462, el equipo de diseño del proyecto, dirigido por el ingeniero jefe de Boeing, Ed Wells, volvió a la mesa de dibujo y produjo un conjunto de conceptos del «Modelo 464«, que al principio eran básicamente Modelos 462 a escala reducida y con cuatro turbohélices, en lugar de seis.
El «464-16» fue diseñado para transportar una gran carga de bombas en un alcance relativamente corto, mientras que el «464-17» fue diseñado para transportar una pequeña carga de bombas en un alcance largo.
La Fuerza Aérea (USAF), como se renombró la USAAF en 1947, estaba interesada en el concepto 464-17, pero concluyó que aún no era lo que se necesitaba, ya que no representaba un gran avance respecto al B-36.
En este punto, algunos jefes de la Fuerza Aérea querían acabar con el proyecto por completo. Pero a los diseñadores se les permitió explorar conceptos mejorados. Para agosto de 1947, habían pasado por varias iteraciones más.
El «Modelo 464-29«, ya contaba con un ala en flecha de 20 grados, cuatro turbohélices Pratt & WhitneyXT57 y mantenía el tren biciclo en el fuselaje y armamento defensivo únicamente en una torreta de cola.
El modelo 464-29 tampoco contentó realmente a la USAF.
La Fuerza Aérea quería mejores prestaciones y también estaba muy interesada en las alas volantes de Northrop, que parecían ser el futuro. El proyecto XB-52 estuvo al borde de la cancelación.
Los ingenieros de Boeing sostuvieron el pulso lo mejor que pudieron, llegando a otra iteración más, el «Modelo 464-35«. El desarrollo del reabastecimiento en vuelo y su adopción por parte de la Fuerza Aérea significó que el 464-35 no tenía que ser tan grande como los anteriores. También tenía alas con una flecha mucho mayor, pero conservaba los cuatro grandes motores turbohélice, aunque equipados con hélices contra-rotatorias.
Mientras tanto, la coyuntura mundial situa al XB-52 en terreno más firme. En junio de 1948, el dictador soviético Josef Stalin impuso un bloqueo a Berlín, haciendo ver que la Guerra Fría iba en serio. La Fuerza Aérea volvió a poner inmediatamente en primer plano el proyecto XB-52, otorgando un contrato para una maqueta y dos prototipos voladores, y el primer prototipo estuvo listo a principios de 1951. La financiación del gobierno comenzó a aumentar.
Un equipo de diseño de Boeing, que incluía a George Schairer, Vaughn Blumenthal y Art Carlsen, fue a la Base Aérea de Wright-Patterson en Ohio y presentó el diseño 464-35 al representante de la Fuerza Aérea, el Coronel Pete Warden, el jueves 21 de octubre de 1948. Warden respondió que la USAF ya no estaba interesada en los turbohélices, la Fuerza Aérea quería un avión a reacción. Eso debió exasperar al equipo de Boeing, ya que la compañía había propuesto versiones del bombardero propulsadas por turborreactores en los meses anteriores y otros altos funcionarios de la Fuerza Aérea les dijeron sin rodeos que lo olvidaran. Sin embargo, Warden se había convertido en un creyente y defensor de los motores turborreactores, y había estado alentando a Pratt & Whitney a desarrollar un turborreactor avanzado, el JT3, que se haría famoso como el J57. Warden sintió que el motor JT3 sería el motor elegido para el nuevo bombardero.
Después de una lluvia de ideas en el hotel, los ingenieros de Boeing llamaron a Warden el viernes por la mañana y le dijeron que tendrían una nueva propuesta que se ajustaría a sus requisitos el lunes por la mañana.
El equipo presentó un bombardero mediano que usaría cuatro turborreactores Westinghouse J-40, y eso parecía un buen punto de partida para actualizar el diseño del 464-35. Al equipo se unieron Ed Wells, H.W. Withington y Maynard Pennell. El grupo de ingenieros trabajó desde su habitación de hotel en Dayton para ampliar la propuesta de bombardero mediano al doble de tamaño, con ocho motores JT3 montados en pares sobre pilones, instalados bajo un ala en flecha de 35 grados.
La propuesta de 35 páginas para el «464-49» estuvo lista para el coronel Warden el lunes por la mañana, junto con un modelo de madera de balsa que Wells había construido con materiales obtenidos en una tienda de aeromodelos de Dayton.
La Fuerza Aérea estaba muy interesada en esta propuesta, y el equipo de diseño siguió modificándola para llegar a un concepto de diseño definitivo, el «464-67«, en noviembre de 1949. La empresa comenzó la construcción de los dos prototipos sobre esa base, pero la USAF continuó dando vueltas, considerando alternativas para el requisito de bombardero estratégico del servicio, como mejorar el bombardero Boeing B-47 Stratojet, entonces en desarrollo avanzado, en una versión mejorada denominada «B-47Z«; y una del B-36 con ala en flecha y motores a reacción, el Convair YB-60.
Afortunadamente para Boeing, el general Curtis LeMay, a partir de octubre de 1948 comandante del Comando Aéreo Estratégico (SAC) de la Fuerza Aérea, se mantuvo entusiasmado con el XB-52. Aun así, todavía llevó más de un año comprometerse con Boeing y su bombardero. Finalmente se adjudicó un contrato por 13 B-52A el 14 de febrero de 1951. El programa ahora avanzó a toda velocidad.
Incluso después de este hito, persistieron las ambigüedades. El cuartel general de la USAF decidió que el servicio no necesitaba un bombardero de largo alcance como el B-52 y quería que todos se construyeran como aviones de reconocimiento.
El SAC, por el contrario, quería construir la máquina para operar como bombardero y como plataforma de reconocimiento, con un equipo de reconocimiento transportado en la bodega de bombas para tales misiones.
En octubre de 1951, el cuartel general de la USAF emitió una orden de que las nuevas máquinas se construirían como máquinas de reconocimiento RB-52. Sobre el papel, el SAC había perdido. En la práctica, LeMay se había salido con la suya.
El desarrollo de los dos prototipos había avanzado mientras tanto. El primer prototipo recibió la designación XB-52 y el segundo la designación YB-52. Al segundo prototipo se le dio un código «Y», que normalmente indicaría una máquina de pre-producción y no un código «X» como prototipo, porque la Fuerza Aérea había obtenido fondos para él de su Comando de Logística, al que no se le permitía formalmente financiar aviones experimentales
El XB-52 se presentó el 29 de noviembre de 1951. El roll-out se realizó a altas horas de la noche y con el avión tapado con lonas para ayudar a mantener el secreto.
Desafortunadamente, el XB-52 sufrió un fallo catastrófico durante las pruebas de carreteo que causó un gran daño en el borde de fuga del ala. Tuvo que ser enviado a la fábrica para reparaciones prolongadas antes de que pudiera realizar un vuelo.
El YB-52 se presentó el 15 de marzo de 1952 y realizó el primer vuelo el 15 de abril de 1952, con «Tex» Johnson a los mandos y el teniente coronel de la Fuerza Aérea Guy M. Townsend como copiloto.
Cabina en tandem del YB-52
El vuelo duró poco menos de tres horas. Despegó de Boeing Field en Seattle y aterrizó en Moses Lake, al este, al otro lado de las montañas en el centro del estado de Washington.
El vuelo salió bien, con algunos problemas técnicos menores como era de esperar para una máquina tan grande y complicada. Johnson se quejó de que la fuerza a aplicar sobre los controles eran demasiado altas, lo que hacía que la máquina fuera agotadora de volar. Lo curioso es que se habían establecido altas deliberadamente, por lo que era fácil de arreglar. Aparte de eso, Johnson informó que el YB-52 era «un muy buen avión».
El Valkirie es posiblemente uno de los proyectos cancelados más conocidos por todos. Un bombardero que podía volar a Mach 3, con geometría de punta de ala variable… En una época en la que contar con los medios informáticos de diseño y simulación de hoy en día hubieran sido poco menos que una quimera. Y, sin embargo, volaba. Eran los años cincuenta, y en ingeniería todo o casi todo era posible, ¡y se invertía dinero en esos desarrollos por locos que parecieran!
El XB-70
Incluso antes del primer vuelo del B-58, la Fuerza Aérea estaba considerandoun sustituto que fuera más grande, más rápido, con más carga de bombas, y mejor. Emitiendo una solicitud en 1954 que surgió formalmente en 1955 como «Sistema de Armas 110 (WS-110)», que especificaba un bombardero de gran altitud y largo radio que transportaría una carga de guerra pesada y volaría a Mach 3.
Boeing y North American presentaron propuestas, pero los conceptos no eran exactamente lo que quería la Fuerza Aérea. Estos aviones habrían tenido un peso máximo al despegue de más de 450 toneladas (un millón de libras) y hubieran sido demasiado grandes para caber en los hangares existentes, dimensionados para el B-52, y hubiera complicado la logística, por su tamaño, en otras instalaciones. Las propuestas fueron rechazadas.
Ambas compañías volvieron a la mesa de dibujo y diseñaron un bombardero con una carga de bélica de 18,2 toneladas (20 000 libras) que podía volar a Mach 3 a una altitud de más de 21 kilómetros (70 000 pies), y aun así podría utilizar todas las instalaciones existentes. North American ganó en diciembre de 1957.
El diseño de la compañía, denominado B-70, tenía una configuración canard, con un fuselaje esbelto y un gran ala delta, cuyas puntas eran avatibles. Esta característica le permitía variar su geometría en vuelo, optimizando el ala para las fases del vuelo subsónicas y supersónicas.
El bombardero iba a ser propulsado por seis turborreactores General Electric J93, cada uno con un empuje de poscombustión de más de 127,5 kN (13.000 kgp / 30.000 lbf).
El tren de aterrizaje del triciclo presentaba conjuntos de tren delantero de dos ruedas y tren principal de cuatro ruedas. El avión se construiría principalmente ¡en acero inoxidable!, y se usaría titanio en secciones específicas críticas para el calor.
Pero, igual que los misiles aire-aire hicieron creer a algunos gerifaltes que no tenía sentido equipar con cañones a los cazas por ser un armamento obsoleto, el nacimiento de los misiles balísticos intercontinentales, con capacidad de portar ojivas nucleares hizo que el desarrollo de este tipo de bombarderos se viera frenado primero, cancelado después.
Eisenhower estaba muy molesto por insistencia de los generales para presionar a favor del B-70 en el Congreso. En diciembre de 1959, el programa B-70 se redujo a un solo prototipo y hasta una docena de bombarderos.
Con el cambio de presidencia las cosas no mejoraron. John F. Kennedy no estaba más entusiasmado con el B-70 que Eisenhower, y el 1 de marzo de 1961 anunció que el programa se reduciría a dos prototipos XB-70 y un avión de pre-producción YB-70.
El primer XB-70 hizo su debut en las instalaciones de North American en Palmdale, California, el 11 de mayo de 1964. Fue bautizado como Valkyrie y el prototipo inicial se designó como Air Vehicle 1 (AV / 1) , y recibió el número de serie 20001.
El Valkirie realizó su primer vuelo el 21 de septiembre de 1964. Fue ampliando su envolvente de vuelo poco a poco, superando Mach 1 por primera vez el 12 de octubre de 1964. Ya en 1965 realizó vuelos a Mach 1,4 y llegaría a superar Mach 2.
En su duodécimo vuelo, el 7 de mayo de 1965, mientras volaba a Mach 2,58, se rompió un trozo del ala y se apagaron cuatro de los seis motores. El piloto logró regresar exitosamente a pista volando con sólo dos motores. Una vez revisado y reparado, se reemplazaron los seis motores.
Para el verano de 1965 se presentaba el el AV/2, que despegaría por primera vez el 17 de julio de 1965. Las pruebas continuaron con ambos XB-70. El 14 de octubre de 1965, el AV/1 alcanzó Mach 3 a 21 kilómetros de altitud, pero sufrió daños en una de las puntas de ala. El AV / 1 nunca volvió superar Mach 2.5.
Se creyó que el AV / 2 tampoco tendría la resistencia estructural necesaria para superar Mach 3. Se planificaron vuelo de ensayo para incrementar la velocidad poco a poco. Se pensó que la mejor forma de evitar los sobre esfuerzos en el ala sería llegar a Mach 3 de forma incremental, primero sosteniendo Mach 2,8 hasta que la estructura alcanzaba su equilibrio térmico y estructural y cesaban los efectos transitorios, posteriormente se aceleraría a Mach 2,9, y se sostendría esta velocidad durante un tiempo, por los mismos motivos, para al final alcanzar Mach 3.
Tras la barrera del sonido hay que superar la barrera térmica. Las propiedades de los materiales cambian a peor y se degradan, las estructuras se deforman, y la temperatura se vuelve una barrera mucho más insalvable para superar Mach 3 que la potencia de los motores o la aerodinámica. El morro y otras partes del avión más expuestas al «choque» con el aire alcanzaban los 330 grados Celsius (625 grados Fahrenheit). El resto del avión se quedaba en sólo 232 grados Celsius. (450 grados Fahrenheit).
Para refrigerar el revestimiento se utilizaba un ingenioso sistema que involucraba al propio combustible: el combustible circulaba por las zonas críticas a refrigerar, actuando como el agua de un radiador, y llegaba a los motores convenientemente precalentado, lo que también era favorable para el motor. El espacio vacío que dejaba el combustible al irse consumiendo era rellenado con un gas inerte, nitrógeno.
El AV / 2 llegí finalmente a volar a Mach 3. Sus vuelos sirvieron también para definir las limitaciones que se impondrían posteriormente a cualquier vuelo supersónico: el ruido generado por el estampido sónico era inaceptable para la población. ¡Por eso el Concorde sólo volaba en supersónico sobre el océano!
En el vuelo número 37, en marzo de 1966, el sistema hidráulico del AV/1 falló, obligando al piloto a hacer un aterrizaje forzoso al no desplegarse de forma adecuada el tren de aterrizaje. El avión tardó 4.8km en detenerse, tras tocar el suelo.
Poco después el AV/2 sufrió un fallo similar, el 30 de abril de 1966. El tren de morro no se desplegó. El piloto realizó dos tomas y despegues, intentando que el tren de morro terminara de desplegarse por su propia inercia. Finalmente, tras varias horas de vuelo buscando soluciones, los ingenieros, en tierra, encontraron la solución y explicaron a la tripulación cómo conectar un sistema eléctrico de respaldo, puenteando un fusible con un clip, y el tren de morro se desplegó.
El 19 de mayo de 1966, AV/2 voló a Mach 3 durante 33 minutos sostenidos. La fase 1 de los ensayos se había completado. Seguirían con la segunda fase, con la NASA cada vez más involucrada en los vuelos de ensayo, durante los cuales se recogían invaluables datos.
El 8 de junio de 1966 se produciría la catástrofe, que todos conocemos, durante una sesión de fotos con otros cuatro aviones que también usaban motores General Electric.
Uno de los aviones era un F-104 Starfighter, pilotado por el conocido piloto de pruebas Joe Walker. Volaba como punto derecho del XB-70 cuando terminó la sesión de fotos. El Starfighter chocó contra el Valkirie. El F-104, que explotó matando al piloto, había dañado el XB-70. El XB-70, al comienzo, siguió volando con normalidad. Luego, la aeronave realizó dos alabeos lentos y comenzó a girar. White logró eyectarse, pero Cross cayó con el avión, que se estrelló contra el suelo unos kilómetros al norte de Barstow, California.
Sus versiones más extrañas
Por supuesto, un avión capaz de volar a esas velocidades, casi in-interceptable, y a esa altitud de vuelo, podía ocupar muchos otros nichos muy interesantes. Si se llegó a pensar en el B747 como transporte de tanques, ¿cómo no se iba a querer sacar provecho de tal maravilla tecnológica diseñando otras versiones que pudieran cubrir otras demandas distintas a las de bombardeo?
Una de las modificaciones potenciales eran para dar soporte al propio bombardero. En caso de ser desplegado a una base aérea no habitual, podría llevar un contenedor externo cargado de todo lo necesario para realizar las labores de mantenimiento mientras se encontraba en la base de dispersión o, en general, en la base no habitual.
Por supuesto, era una plataforma idónea para la experimentación de otros vehículos. ¡Qué mejor plataforma de lanzamiento de vehículos hipersónicos de investigación que un avión que ya de por sí solo podía volar a tres veces la velocidad del sonido! Algunos tipos de vehículos, como el vehículo de prueba suborbital defuselaje sustentador Martin SV-5, solo requerían carenados delanteros y traseros en lugar de un recinto completo.
Por ese mismo motivo recibió mucha atención de empresas públicas y privadas, de civiles y militares. Podía ser una buena plataforma para lanzar desde 21000 metros satélites, vehículos orbitales o suborbitales… y reemplazar los costosos cohetes y sistemas de lanzamiento balísticos por un avión reutilizable.
El relativamente pequeño X-20 Dyna-Soar podría transportarse bajo el B-70, con solo añadir un carenado ventral. Este concepto era lo suficientemente atractivo como para hacer que las pruebas en el túnel de viento fueran un requisito antes de que pudiera continuar. Con la cancelación del programa Dyna-Soar, la USAF detuvo todas las investigaciones.
Lockheed construyó el RM-81 Agena originalmente para el programa de satélites de reconocimiento WS-117L. Después de que WS-117L se dividiera en tres programas, el Agena se convirtió en un acelerador de etapa superior y portador de satélite. Lanzar el Agena desde un propulsor recuperable como un B-70 ahorraría un costo significativo en comparación con los grandes cohetes desechables de la época.
Incluso se pensó en el Valkirie como lanzador reutilizable para el Programa Gemini.
Recordáis que hubo un tiempo durante la guerra fría durante el cual siempre había tripulaciones de B-52 armados volando, por si llegaba el caso de tener que utilizar la fuerza, y que además actuaban como medida disuasoria. Pues se pensó que el Valkirie hubiera podido ser una medida mucho más disuasoria todavía, si hubiera volado en misiones similares a estas si hubiera volado armado con un silo porta misiles balísticos intercontinentales LGM-30 Minuteman II.
El muy exitoso programa X-15 hizo que se propusiera una variante con ala delta, capaz de volar aún más rápido y alto que el propio X-15. Para maximizar el potencial de este nuevo vehículo, ¿qué mejor que lanzarlo ya a Mach 3 desde el Valkirie?
El usarlo como misilero no caería en el olvido fácilmente y se propondrían distintas variaciones de la misma misión. Sobre estas líneas el concepto de porta misiles de propósito general, proponía usar una plataforma misilística común con diferentes ojivas adaptadas para diferentes objetivos similares a las armas inteligentes de hoy. Con no menos de 14 de estas armas, el B-70 estaba listo para cualquier amenaza. Debajo, un B-70 equipado con misiles GAM-87 Skybolt.
Y, siendo un avión invulnerable, ¿cómo no hacer una versión de reconocimiento? Las modificaciones necesarias para convertir el YB-70A en el RSB-70A, de reconocimiento/ataque, incluían el cambio de aviónica, la adición de cámaras de reconocimiento y la instalación de un bastidor rotativo, tipo revólver, como el que montarían bombarderos diseñados tiempo después.
El XB-70 era rápido, muy rápido. Pero eso no significaba que no se quisiera volar aún más rápido. Y para ello era necesario poder investigar con estatorreactores, e intentar llegar a tener vehículos o misiles hipersónicos, ahora tan en boga.
Y como olvidarnos de todas las conversiones que hemos visto de aviones militares a aviones ejecutivos o de transporte. El Valkirie no podía ser menos. Modificar el XB-70, un avión que ya estaba en vuelo y se conocían sus fortalezas y deficiencias, era la manera más rápida de tener un avión de pasajeros supersónico, modificando su fuselaje para incluir ventanas.
La configuración normal de asientos podría acomodar a 80 pasajeros, mientras que la de alta densidad admitía hasta 107.
Además el Valkirie podría configurarse como avión de evacuación médica de muy alta velocidad, pudiendo transportar hasta 48 heridos más el personal sanitario.
Las modificaciones incluían el fuselaje superior, para hacer hueco a los pasajeros y añadir ventanas, un área para transportar el equipaje, una puerta de carga más baja y la reducción de la cantidad de combustible que se podía transportar.
Las versiones de alta densidad y de evacuación médica tenían una clara vocación militar.
Incluso se propuso una versión puramente de carga. Se intentó demonstrar que la capacidad de carga de su transporte supersónico podía ser igual o mejor que la de transportes más grandes. Tal vez no pudiera llevar tanta carga, pero sí podía hacerlo más rápido, y cubrir más veces el mismo trayecto en el mismo tiempo.
Se plantearon distintas soluciones para cargar el avión, un morro basculante como el del C-5, puertas de carga en la panza, o el uso de contenedores cargados bajo el fuselaje.
Repostar aviones supersónicos tan rápidos como el Valkiria hubiera sido más sencillo si un avión igual actuaba de cisterna.
Para solucionar los problemas de su manejo a baja velocidad, para acortar la carrera de despegue y aterrizaje y poder utilizar pistas convencionales, se pensó en acoplar un ala Rogallo retráctil. También se pensó instalar en el F-100.
Y, por supuesto, habiendo en desarrollo aviones de pasajeros supersónicos, cazas, bombarderos así como queriendo desarrollar vehículos hipersónicos… había en desarrollo nuevos motores. Y había que ensayarlos en algún avión… la seguridad que aportaba la condición de multimotor y su alta velocidad, hacían al Valkirie ideal para este cometido…