Primer vuelo de un helicóptero en Marte

Diecinueve de abril de 1890. Clement Ader registraba una patente de una cosa llamada avión. Ciento treinta y un años más tarde volaba por primera vez una aeronave de ala rotatoria en la atmósfera de otro planeta.

A las 9:34, hora peninsular española, el pequeño helicóptero no tripulado despegaba de la superficie marciana. Alcanzaba una altura sobre el suelo de algo más de 3 metros, sostenía un vuelo estacionario de 30 segundos y volvía a aterrizar de forma exitosa. En total 39.1 segundos de vuelo. Y sí, curiosamente los datos de altura sobre el suelo se han dado en metros, en lugar de en pies, ¡cosas de ingenieros! (o de pilotos de veleros).

Pero este vuelo implica muchas más cosas que controlar una aeronave a distancia, no es otro drone más.

Por un lado, y posiblemente lo más obvio, destacar que en Marte el helicóptero de palas contrarrotatorias no puede navegar con ayuda del GPS. Así pues han tenido que solucionar los problemas de navegación utilizando la vieja técnica de los inerciales, y cámaras y procesado de imágenes.

Por otro lado, no se puede recurrir a que sea un simple helicóptero teledirigido, puesto que el retraso que hay desde que se envía la orden desde la tierra hasta que la ejecuta la aeronave en Marte es suficiente como para que el vuelo termine en accidente, así que ha de incorporar una inteligencia artificial que automatice decisiones en función de los datos que reciba de los distintos sensores.

Pero además está el problema de la densidad de la atmósfera marciana. La gravedad de Marte es entorno a un tercio de la de la Tierra (3.72m/s² frente a los 9.81m/s²), lo que hace que los 1.8kg de masa pesen menos allí que aquí. Sin embargo ¡la densidad de la atmósfera es de un 1% la de nuestro planeta (~0.01kg /m3 frente a los 1.225kg/m3)!. Para que el helicóptero vuele, la sustentación proporcionada por sus palas debe al menos igualar la masa del helicóptero. Como la sustentación depende del tamaño de las palas, la velocidad a la que roten y la densidad del gas en el que se mueven, y al ser ésta última tan baja, se han tenido que utilizar palas de 1.2m de diámetro capaces de rotar a 2400rpm para elevar los menos de dos kilos (1.8kg) del helicóptero. Y posiblemente haya sido necesario desarrollar un nuevo perfil aerodinámico para las palas.

Y si todo esto os parece poco, echad un ojo a su clima.

Especificaciones

  • Altura: 0.49m
  • Diámetro de los rotores contrarrotatorios de fibra de carbono: 1.2m
  • MTOW: 1.8kg (incluye 6 baterías de litio, sensores, carga útil, y escudo térmico)
  • Masa en vacío: 0.7kg
  • Altitud máxima: de 3 a 5m
  • Alcance máximo: 300m (alcance máximo de la emisora del Perseverance)
  • Autonomía de vuelo: 90 segundos
  • Paneles solares para recargar totalmente la batería en 24h y 40 minutos (1 día marciano)

Calendario de pruebas

  • 21/03/21: Perseverance lanza la tapa que carenaba al Ingenuity
  • 03/04/21: Perseverance situa al Ingenuity en el punto escogido como adecuado para actuar como helipuerto
  • 13/04/21 la NASA realiza ensayos con Ingenuity y deciden que o deben actualizar el software del helicóptero o deben cambiar la secuencia de comandos utilizada para su puesta en marcha y despegue
  • 17/04/21 la NASA logra poner los rotores del Ingenuity al máximo de sus revoluciones
  • 19/04/21 Primer vuelo

A este primer vuelo de este demostrador tecnológico seguirán otros cuantos, todos muy sencillos y con objetivos que pueden parecer poco ambiciosos a primera vista. Pero como toda aeronave cuando se prueba, se comienzan dando saltos por la pista, y se va ampliando su envolvente de vuelo poco a poco.

Vuelos a realizar

  • 1er vuelo: Despegue, sostener vuelo a punto fijo a 3 metros, aterrizaje. 39 segundos
  • 2º vuelo: Despegue, ascenso en vertical a unos 5m, vuelo de translación en horizontal de otros ~5m, y regreso al punto de partida siguiendo la misma trayectoria. 90 segundos.
  • 3er vuelo: Despegue, ascenso vertical hasta ~5m, translación de unos ~50m. Vuelta al punto de partida. 90 segundos.

Los vuelos 4º y 5º servirán para ampliar la envolvente de vuelo del helicóptero, una vez se hayan analizado los datos obtenidos de los tres primeros vuelos.

Fuentes:

Deja una respuesta