La NASA ha probado en el túnel de viento de Langley una pareja de rotores del helicóptero multirrotor que mandará a Titán, la luna de Saturno, con la misión Dragonfly.
Los investigadores simularon las condiciones previstas para el vuelo estacionario, el descenso y el ascenso, y evaluaron las cargas aerodinámicas de cada rotor con una variedad de velocidades del viento, ángulos del eje de giro y velocidades de rotación. También realizaron pruebas con un rotor en funcionamiento y el otro inmóvil para evaluar los modos de seguridad ante el fallo.
Los sensores y acelerómetros en el especimen de prueba midieron las cargas y aceleraciones en cada rotor. El análisis preliminar de los datos indica que las predicciones de CFD (computación de fluidos por ordenador) sobre el rendimiento del rotor y los requisitos de potencia son válidas, y predicciones similares para la operación en Titán están dentro de las tolerancias esperadas de la misión.
Las pruebas en esta instalación única en su tipo fueron un primer paso crucial para hacer realidad esta emocionante misión. Los datos que recopilamos en el tunel de viento nos darán una imagen mucho más clara de cómo podemos esperar que funcionen los rotores de Dragonfly en la atmósfera alienígena de Titán.
Richard Heisler, líder de ensayos en túnel de viento para Dragonfly
Se trata del helicóptero de la misión Dragon Fly. El helicóptero será un octorrotor, de 450kg, cuyo fuselaje medirá unos 2m de largo (del morro a la cola) y otros dos de ancho (del punto más externo del diámetro descrito por las palas del rotor al otro).
El lanzamiento de Dragonfly está programado para 2027, y la llegada a Titán para 2034, cuando comenzará lo que se espera sea una misión de 3 años para explorar y arrojar luz sobre la compleja química en el exótico satélite. Fue seleccionado en junio de 2019 como parte del programa New Frontiers de la NASA, que incluye la misión New Horizons a Plutón y el Cinturón de Kuiper, Juno a Júpiter y OSIRIS-REx al asteroide Bennu. Dragonfly está dirigido por la investigadora principal Elizabeth Turtle en APL, que se encuentra en Laurel, Maryland.
Se convertiría así en el segundo helicóptero en volar en una atmósfera distinta de la de la Tierra, habiendo sido el primero el Ingenuity (~2kg de masa al despegue y 1.2m de diámetro de rotor).
Las condiciones que se va a encontrar el Drafonfly en Titán son justo las contrarias que el Ingenuity en Marte. Si en Marte había que volar en una atmósfera mucho menos densa que la terrestre y con mucha menos presión, en Titán el octorrotor deberá volar en una atmósfera que se encuentra a unos -177ºC, 1.6 atmósferas de presión y que tiene una densidad de 5.9kg/m³, y 1.35m/s² de aceleración de la gravedad frente a los 15ºC, 1 atmósfera, 1.225kg/m³ y 9.81m/s² de la Tierra.
Por comparar, la gravedad de Marte es entorno a un tercio de la de la Tierra (3.72m/s² frente a los 9.81m/s²). Sin embargo ¡la densidad de la atmósfera es de un 1% la de nuestro planeta (~0.01kg /m3 frente a los 1.225kg/m3).
Así pues el diseño tiene que afrontar los problemas opuestos a los que os contamos que tenía que superar el Ingenuity: muchísima densidad y poca aceleración de la gravedad.
La sustentación depende proporcionalmente de la densidad del aire y de la velocidad de rotación de los rotores de los rotores. La sustentación ha de vencer al peso para que Dragonfly pueda volar. Al tener mucha más densidad que en Marte, no será necesario que roten tan rápido como las del Ingenuity. Así pues, como en el caso del helicóptero marciano, aunque las leyes de la aerodinámica son conocidas, tendrán que rediseñar todo, posiblemente incluso los perfiles aerodinámicos, para adaptarlos a la atmósfera de Titán.
Otros retos de la ingeniería será la elección de los materiales, puesto que sus propiedades mecánicas se degradan mucho con temperaturas tan bajas, el diseño de la electrónica, así como la navegación: como en el caso de Marte no se cuenta con una red de satélites para dotar de navegación GPS al helicóptero.
Fuentes
NASA [ -1-] y [-2-], las fotos se las he robado a Daniel Marín.