Por qué los motores de los aviones son tan grandes, y los eVTOL tan ineficientes

Parecen dos temas totalmente independientes, pero en el fondo están íntimamente relacionados, y todos se pueden explicar con la misma simplificación matemática de cómo funciona un grupo moto-propulsor de una aeronave.

Una de las teorías más sencillas de cómo se produce el empuje en un avión, sea de motor de pistón más hélice, sea un motor a reacción, sea un turbofan, es la teoría de la cantidad de movimiento.

En esta teoría, se reemplaza todo el grupo  motopropulsor por un «disco» que tiene el área de la hélice, o del fan, y que proporciona al aire «aguas arriba» un salto de velocidad y un incremento de presión, lo que genera un empuje.

De esta manera nos permite expresar el empuje obtenido y el rendimiento del grupo motopropulsor de formas muy sencillas.

La teoría tomta tantas hipótesis tan imposibles de cumplir en la realidad, que hace que sea una teoría poco representativa de la realidad. Sin emabargo es MUY simple, y nos da una cota superior del rendimiento del grupo motopropulsor. Esta cota superior del rendimiento sería el rendimiento teórico máximo. Por eso nos permite comparar de forma sencilla y rápida distintas configuraciones, y sabemos que si una configuración es mala con esta teoría —que es en exceso benévola—, en la realidad la configuración será malísima.

No vamos a entrar a desarrollarla, puesto que hay muchos apuntes en internet que la explican, incluso en la Wikipedia, y  nos vamos a quedar sólo con las ecuaciones que nos interesan, la de la tracción generada por el grupo motopropulsor (T), y la del rendimiento (potencia util/potencia generada).

T=2·ro·S·(V+vi)·vi

Siendo T la tracción, ro la densidad del aire, S la superficie del disco, V la velocidad de la corriente libre y vi la velocidad que se induce al aire en el disco.

De la primera deducimos que:

  • Cuanta más densidad de aire, mejor (y por tanto tendremos problemas los días de mucho calor o a gran altitud no solo porque el término de la densidad del aire aparece en la expresión de la sustentación, sino porque también aparece en el de la tracción).
  • Cuanto más grande sea el disco de la hélice (o del fan), más tracción tenemos. Pero esto nos limitará la velocidad en aviones de hélice muy rápidos, al alcanzar antes la velocidad supersónica en punta de pala que en una hélice de menor radio.
  • Cuanto mayor es el salto de velocidades antes del disco y después del disco, más tracción tenemos también.

R=1/(1+(vi/V))

Y ahora vamos a por la ecuación del rendimiento. Lo que nos dice es que cuanto mayor sea el salto de velocidades entre la corriente libre (o aguas arriba) y la velocidad que se imprime al aire en el disco, menor será el rendimiento.

Así que para conseguir mucho empuje con un gran rendimiento, hay que mover mucha cantidad de aire (disco con superficie muy grande), dándole un salto de velocidad lo más pequeño posible.

Así pues…

  • Los aviones de hélice que vuelan relativamente lentos tendrán palas de hélices largas (pero cuanto más rapido tenga que volar el avión, más habrá que recortar la pala)
  • Los aviones de turbofan procuran dar un salto pequeño de velocidad a mucha cantidad de aire, con motores de muy alto índice de derivación
  • En tamaño radio control, un helicóptero será más eficiente que un multicóptero, que suelen tener muchas hélices pero pequeñas y su área total rara vez alcanza la del helicóptero de misma masa.
  • Todos los eVTOL que han optado por configuraciones con un disco pequeño (o suma de discos pequeños, porque casi todos usan mútiples hélices pequeñas) serán mucho menos eficientes que cualquier ala rotatoria tradicional, sea helicóptero sea autogiro
Ya archi-conocida imagen explicando cómo varía la eficiencia del un VTOL volando a punto fijo en función de la carga del disco, proveniente del libro de la NASA: The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight (PDF)

Y, dicho sea de paso, esto también explica por qué los resultados sobre viento producido aguas abajo de los rotores de los eVTOL medidos por la FAA, calculados por la CAA  y esperados por la EASA sean incluso mayores que en los  helicópteros.

Deja una respuesta