Aurora progresa con los ensayos para el ekranoplano de DARPA

Llevamos un tiempo siguiendo las andaduras de DARPA y su Liberty, algo así como la reedición futurista de los Liberty Ships de la Segunda Guerra Mundial, pero en vehículo de efecto suelo, o ekranoplano.

Como hemos comentado en el podcast con nuestro amigo Carlos en más de una ocasión, creemos que el teatro de operaciones estadounidense del futuro va a ser marítimo, concretamente en la zona de Taiwan, así que necesita vehículos que pueda desplazarse a gran velocidad hasta la isla. Y esta aeronave, pensada para no volar más que rascando el agua, podría ser una buena solución: gran capacidad de carga a alta velocidad. Y además, DARPA solicitaba que fuera con materiales no habituales en aeronáutica, así que imaginamos que se estará pensando en acero inoxidable, más resistente a ambientes marítimos que el aluminio.

Y Aurora acaba de anunciar en una nota de prensa que el proyecto marcha adecuadamente, realizando los ensayos correspondientes al contrato de la Fase 1B. Y, siendo Aurora una compañía de Boeing, suponemos que se beneficiarán de todos los conocimientos adquiridos por esta última durante el desarrollo de su Pelican.

El programa centra el foco en tres aspectos:

  • Operaciones marítimas ampliadas: Se hará hincapié en el funcionamiento en estados de mar turbulentos mediante la creación de capacidades STOL para reducir la carga de impacto de las olas durante el despegue/aterrizaje y nuevas soluciones de diseño para absorber las fuerzas de las olas. Además, el proyecto abordará los riesgos de colisión del vehículo durante el funcionamiento a alta velocidad en entornos congestionados. Por último, el objetivo es que el vehículo funcione en el mar durante semanas, sin actividades de mantenimiento en tierra.
  • Fácil industrialización a gran escala y bajo coste: La construcción dará prioridad a los diseños sencillos y baratos de fabricar frente a los conceptos complejos y de bajo peso. Los materiales deben ser más asequibles que los de la fabricación tradicional de aviones y estar disponibles para ser comprados en grandes cantidades.
  • Controles complejos de vuelo y en el mar: Se desarrollarán sensores y esquemas de control avanzados para evitar las grandes olas y gestionar las interacciones aerodinámicas e hidrodinámicas durante el despegue y el aterrizaje.

La Fase 1B es la que se conoce normalmente como diseño preliminar, que termina con una PDR o revisión del diseño preliminar. Durante esta fase se define la forma general de la aeronave, y se calcula su estructura para poder definirla a grandes rasgos, dejando para la fase siguiente los diseños más detallados, como por ejemplo las uniones más específicas.

Además, durante esta fase se realizan ensayos para reducir los riesgos, así que se ensayan formas de fabricar, de ensamblar, materiales… y se realizan ensayos aerodinámicos e hidrodinámicos.

Seguiremos el proyecto…

Nota de Prensa:

Los ensayos reducem el riesgo y mejora la calidad a medida que el equipo diseña su revolucionario concepto de hidroavión para DARPA.

Aurora Flight Sciences, una compañía de Boeing, está avanzando en la Fase 1B del programa Liberty Lifter, el programa de la Agencia de Proyectos de Investigación Avanzada de Defensa (DARPA) que tiene como objetivo diseñar, construir, poner a flote y volar un avión experimental asequible que demuestre una capacidad revolucionaria de transporte pesado desde el mar. Para lograr esta capacidad revolucionaria, el vehículo operará de manera eficiente en efecto suelo en condiciones de mar agitado y demostrará asequibilidad utilizando fabricación de bajo costo y características de diseño únicas.

El objetivo final de la Fase 1B es el diseño preliminar, y un enfoque importante durante la fase es la prueba para reducir el riesgo. ReconCraft, un astillero con sede en Oregón, es un miembro del equipo de Aurora que ofrece experiencia en métodos de fabricación marítima. La compañía construirá especímenes de prueba de estructuras a escala real, incluyendo una parte del fuselaje. La construcción y prueba de las estructuras reduce el riesgo y garantiza la calidad, ya que el equipo trabaja con materiales novedosos y requisitos únicos. El equipo de Aurora también probó un modelo a escala del casco en el tanque de remolque de Virginia Tech, que ofrece una capacidad única para estudiar el impacto de la embarcación durante el aterrizaje. Las próximas pruebas incluyen volar sensores y software para la detección y predicción de olas, que alimenta el sistema de control avanzado del avión X para volar de manera segura en efecto suelo en condiciones de mar agitado.

En su última versión, el diseño de Aurora para el Liberty Lifter cambió de una cola en forma de T a una cola en forma de π, que es más eficiente estructuralmente para acomodar una puerta de carga posterior. Además, los flotadores fueron reubicados a las puntas de las alas del vehículo, lo que crea un mejor equilibrio entre la asequibilidad y el rendimiento del vehículo en efecto suelo.

Junto con ReconCraft, el equipo liderado por Aurora incluye a la destacada empresa de arquitectura naval e ingeniería marina Gibbs & Cox, una compañía de Leidos. La empresa desempeña un papel crítico ya que el avión X, en muchos aspectos, es un barco que vuela. Varios asesores e ingenieros de la empresa matriz de Aurora, Boeing, también aportan su experiencia al equipo. El programa se beneficia de investigaciones y desarrollos previos de Boeing, que tiene una larga historia en hidroaviones y aviones anfibios.

Boeing Pelikan

«Las innovaciones a menudo ocurren en las intersecciones. Aquí, es la intersección de nuestros equipos marítimos y aeroespaciales», dijo Dan Campbell, gerente del programa de Aurora. «Por ejemplo, la intersección de la fabricación marítima con el diseño estructural aeroespacial, o la intersección de la predicción de olas marítimas con los controles aeroespaciales».

La Fase 1B concluye con una revisión preliminar del diseño, programada tentativamente para enero de 2025. Si el programa avanza, las pruebas de vuelo se llevarían a cabo en 2028.

Climate Impulse: la vuelta al mundo en un avión a hidrógeno

Bertrand Piccard se hizo famoso por impulsar y dar la vuelta al mundo en un avión impulsado exclusivamente por energía solar, el Solar Impulse. Ahora quiere repetir aquél gesto con un avión propulsado por hidrógeno, al que ha llamado Climate Impulse, en colaboración con la empresa Syensqo.

La cita está fijada para 2028. El suizo, que conoce ha batido el récord de autonomía al volante del Hyundai Nexo, quiere emprender de nuevo una vuelta al mundo en un avión sin emisiones, esta vez con pilas de hidrógeno líquido. Sabemos que los motores de hidrógeno son viables y se han ensayado ya en varias ocasiones (recordamos el Bee project de los 50, el Tupolev de los 80 y el Boeing de 2009). El mayor reto de este vuelo es crear depósitos criogénicos, para mantener el hidrógeno a -253ºC. Además se pretende utilizar exclusivamente hidrógeno verde.

Como explica un comunicado de prensa, el proyecto se lanzó tras dos años de investigación, bajo el liderazgo de Airbus, Daher, CapGemini y con la participación de ArianeGroup, posiblemente la empresa Europea con más experiencia en la gestión y logística del hidrógeno como combustible.

Un navegante de regatas oceánicas a su lado


Bertrand Piccard no estará solo, lo hará en compañía del francés Raphaël Dinelli, regatista de alta mar (Transat Jacques Vabre, Route du Rhum) y también ingeniero especializado en materiales compuestos. Diseñador y piloto de pruebas del avión eléctrico híbrido de energía limpia ERAOLE, dirigirá el montaje del avión, que integra los tanques en su fuselaje.

Las fechas y los desafíos

En términos de planificación, los próximos dos años se dedicarán a la fabricación y montaje de piezas. En 2026 se realizarán las primeras pruebas y, en 2027, una travesía del Atlántico al estilo Lindbergh entre la costa este de Estados Unidos y Le Bourget.

Al año siguiente, en 2028, los dos pilotos se embarcarán en su intento de dar la vuelta al mundo en un avión de hidrógeno.

Actos para conmemorar el centenario de la primera circunnavegación aérea de Australia

Durante el período del 6 de abril al 19 de mayo de 1924, el líder de escuadrón ‘Jimmy’ Goble y el sargento Ivor Mcintyre de la RAAF realizaron el primer vuelo alrededor de Australia, en un hidroavión Fairey. Este fue un viaje épico, reconocido con el premio del Trofeo Britannia como el logro destacado de vuelo en 1924.

A lo largo de 2024 se han organizado varios vuelos para conmemorar esta historia.

Hidro de James

James Moline será el piloto de hidroavión australiano más antiguo volando en solitario para circunnavegar Australia.

Además, replicando el vuelo original, Michael Smith volará en sentido contrario a las agujas del reloj, siguiendo la ruta y el cronograma del vuelo original, en su anfibio bimotor Seabear, desde Point Cook

Además, Cathy Babis será la primera mujer en realizar el vuelo al rededor de Australia, junto con su copiloto David Geers. Volarán en sentido de las agujas del reloj, en un anfibio Searey junto con otros aviones, aprovechando temperaturas más cálidas y vientos favorables, y evitando el final de la temporada de lluvias en el norte. A lo largo de nuestra aventura, promoverán la educación STEM y fomentarán la diversidad en todas las ocupaciones de la aviación.

Ciexunnavegación parcial, en sentido contrario a las agujas del reloj, a través del centro Rohan Whittington volará su Super Petrel comenzando en Point Cook el 6 de abril, dirigiéndose hacia el norte hasta la costa norte y uniéndose a los otros dos grupos en Broome antes de continuar en sentido contrario a las agujas del reloj.

¡Esperamos ver muchos vídeos e imágenes de estos vuelo!

Fuente

Vídeo: 747-8 carguero aterriza de emergencia por un motor en llamas

Un 747-8 carguero de Atlas Air, empresa que recibió la última reina que salió de la factoría, ha aterrizado con sus cinco tripulantes, que han seguido los procedimientos de emergencia de forma ejemplar, de forma segura en el aeropuerto de Miami.

El avión tiene sólo 8 años y lleva motores General Electric GEnx.

La tripulación declaró mayday al poco de despegar, e inició el regreso al aeropuerto del que acababa de despegar poco antes de llegar a los 4000ft, aterrizando 13 minutos después de su despegue. Cuando los controladores preguntaron si necesitaban quemar combustible para reducir el peso durante el aterrizaje, los pilotos respondieron que aterrizarían con el peso que llevaban.

El avión volaba de Miami a Juan Luis Muñoz Marín, en Puerto Rico.

Se está empezando a investigar lo sucedido.

La pila de hidrógeno que alimentarña el motor ZEROe de Airbus, ha arrancado por primera vez

Venimos siguiendo estos últimos años con interés todos los avances realizados en hidrógeno, y en concreto la iniciativa ZEROe de Airbus. De hecho no hace mucho hablábamos del primer vuelo con hidrógeno realizado por Airbus, con un motovelero.

Pero la pila de hidrógeno que alimentará el motor del futuro que ha arrancado por primera vez es mucho más grande. El motor fue presentado en 2022, y sabemos que el plan de Airbus y Safran es ensayarlo en un A380, y que han hecho ya algunas pruebas con su proyecto Hyperion.

El ensayo se ha realizado en una bancada de ensayos, iron bird la llaman en la nota de prensa, totalmente instrumentada para medir el rendimiento de las células de hidrógeno y del motor, y además capaz de soportar los esfuerzos que induce en ella el motor mientras soporta el motor. ¡Y la pila ha llegado a los 1.2MW (~16100CV) de potencia!.

La apuesta del futuro de Airbus es el SAF a corto plazo, y el hidrógeno a más largo plazo. Según desvelan sus notas de prensa, pretenden tener volanto tan pronto como en 2035 un avión con motor de hidrógeno, y en 2026 el A380 número de serie 001 (MSN001).

Dejamos la nota de prensa debajo:

A finales de 2023, los equipos de ZEROe pusieron en marcha el futuro sistema de propulsión de hidrógeno diseñado para la aeronave de concepto eléctrico de Airbus. Además del sistema de celdas de combustible de hidrógeno, el «iron pod» -equivalente en motores al «iron bird«- contiene los motores eléctricos necesarios para hacer girar una hélice y las unidades que los controlan y mantienen refrigerados. Su exitoso encendido a 1,2 megavatios es un paso crucial en la hoja de ruta de Airbus para poner en servicio una aeronave de propulsión de hidrógeno para 2035.

El poder del elemento más abundante del mundo

En 2020, Airbus compartió cuatro conceptos de aeronaves propulsadas por hidrógeno con el público. Tres utilizaban la combustión de hidrógeno y motores híbridos para la potencia, y la cuarta era completamente eléctrica, utilizando celdas de combustible de hidrógeno y un sistema de propulsión de hélice. Estas celdas de combustible funcionan transformando el hidrógeno en electricidad a través de una reacción química. El subproducto de la reacción es agua (H2O), lo que resulta en casi cero emisiones.

El enorme potencial de las celdas de combustible de hidrógeno para descarbonizar la aviación las convirtió en una de las tecnologías clave elegidas para ser exploradas en mayor profundidad en el demostrador ZEROe, pero hubo un desafío. Aunque las celdas de combustible de hidrógeno ya existían en el mercado cuando comenzó el proyecto, ninguna proporcionaba la energía necesaria para alimentar una aeronave manteniendo un peso aceptable. Por lo tanto, en octubre de 2020, Airbus creó Aerostack, una empresa conjunta con ElringKlinger, para desarrollar pilas de celdas de combustible de hidrógeno que estarían en el corazón del sistema de propulsión eléctrica de una aeronave ZEROe.

Las pruebas exhaustivas del sistema de células de combustible se llevaron a cabo en Ottobrunn, Alemania, a solo 13 kilómetros de Múnich, en la Casa de Sistemas de Aeronaves Eléctricas (EAS, por sus siglas en inglés). La instalación de Airbus es la más grande de Europa para probar sistemas de propulsión y combustibles alternativos, y es donde se prueban los principales componentes del sistema de propulsión que impulsarán las hélices del demostrador.

En junio de 2023, Airbus anunció el exitoso programa de pruebas del sistema de células de combustible de hidrógeno, el cual alcanzó su nivel máximo de potencia de 1.2 megavatios. Fue la prueba más potente jamás lograda en la aviación de una célula de combustible diseñada para aeronaves a gran escala, y sentó las bases para el próximo gran paso del proyecto: integrar el sistema de propulsión completo con el motor eléctrico.

El hidrógeno alimenta el pod de hierro. El gran día tuvo lugar a finales de 2023, cerrando el año en un momento álgido para el equipo ZEROe. Después de completar con éxito las pruebas del sistema de celdas de combustible a 1,2 megavatios en junio y del tren motriz a 1 megavatio en octubre, los motores eléctricos del pod de hierro se alimentaron por primera vez con las celdas de combustible de hidrógeno.

“Fue un momento enorme para nosotros porque la arquitectura y los principios de diseño del sistema son los mismos que veremos en el diseño final”, dice Mathias Andriamisaina, jefe de pruebas y demostración del proyecto ZEROe. “El canal de alimentación completo se ejecutó a 1,2 megavatios, la potencia que pretendemos probar en nuestro demostrador A380”. Sistema de propulsión de celdas de combustible

Observar cómo interactúan los muchos sistemas durante esta prueba es clave para habilitar los siguientes pasos del proyecto. “Este proceso es cómo aprendemos qué cambios deben hacerse para que la tecnología sea apta para el vuelo”, dice Hauke Peer-Luedders, jefe del sistema de propulsión de celdas de combustible para ZEROe. “Medimos cómo funciona el sistema de propulsión en su conjunto probando la potencia necesaria para varias fases de vuelo diferentes, como el despegue, donde alcanzamos niveles máximos de potencia, y el crucero, cuando usamos menos potencia pero durante un período de tiempo más largo”.

Han pasado tres años desde que revelamos un concepto de avión alimentado al 100% por celdas de combustible de hidrógeno. Desde entonces, nos hemos adherido a nuestra línea de tiempo inicial y hemos hecho un tremendo progreso. El éxito reciente de poner en marcha el sistema de iron pod a 1,2 megavatios es un paso crucial hacia nuestro objetivo de poner un avión alimentado por hidrógeno en los cielos para 2035.

Glenn Llewellyn, vicepresidente de ZEROe Aircraft en Airbus

Las pruebas continuarán en esta primera versión del pod de hierro durante todo 2024. Una vez completado, el siguiente paso para el equipo ZEROe será optimizar el tamaño, la masa y las calificaciones del sistema de propulsión para cumplir con las especificaciones de vuelo. Las calificaciones incluyen las reacciones del sistema a la vibración, la humedad y la altitud, entre otros factores.

Una vez que se completen estas optimizaciones y pruebas, el sistema de propulsión de celdas de combustible se instalará en la plataforma de prueba de vuelo multimodal ZEROe, el primer A380 producido por Airbus, MSN001. Esto será seguido por las pruebas en tierra de los sistemas antes de la etapa crucial de probarlos en vuelo en el A380, actualmente programado para 2026.